The Hong Kong University of Science and Technology

UG Course Syllabus

[Course Title] Excel VBA Programming Bridging Course

[Course Code] COMP 1029V

[No. of Credits] 1 Credit

[Exclusion(s)] COMP 1022Q, ISOM 3230

[Prerequisite(s)] COMP 1021 OR COMP 1022P OR ISOM 3320

Name: Gibson Lam

Email: gibson@cse.ust.hk

Course Description

This course introduces the VBA programming language, in the context of Microsoft Excel. It is intended for students who already have some experience in computer programming but wish to learn how to apply those programming skills to VBA, within Excel. The course covers basic programming topics, such as variables, functions and loops, to more advanced topics. Appropriate features of the Excel program are also covered. Students explore these by self-learning of course materials together with guided programming exercises. Students without the prerequisites but possess relevant programming knowledge may seek instructor's approval for enrolling in the course. Graded P or F.

List of Topics

Introduction to Excel

- Introduction to Spreadsheets
- Cell References
- Cell Formulas
- Making Decisions in Cell Formulas

Getting Started with Excel VBA

- Making Macros
- Basic VBA Programming
- Making Decisions in VBA

Loops and Functions

- Common Excel VBA Objects
- Looping
- Functions and Subroutines

GUI and Recursion

- Introduction to GUI Handling
- Adding GUI Components
- Recursion

Object-Oriented Programming and Arrays

• Object Oriented Programming in VBA

- Array Indexing
- 2D Arrays

Intended Learning Outcomes (ILOs)

By the end of this course, students should be able to:

- 1. Define basic programming elements such as variables, loops and functions in VBA
- 2. Describe data structures and data abstraction in VBA
- 3. Implement advanced programming concepts in VBA
- 4. Design, write and debug computer programs in VBA

Assessment and Grading

This is a P/F course. P grade will be assigned to students who have achieved the online exercises and final examination passing requirements.

Assessment Task	Passing Requirements
Online exercises	Achieved 60% or higher
Final examination	Achieved 40% or higher

Assessments:

Assessment Task	Contribution to Overall Course grade (%)	Due date
Online exercises	50%	Every Friday from 04/07/2025 to 25/07/2025
Final examination	50%	31/07/2025

* Assessment marks for individual assessed tasks will be released within two weeks of the due date.

Mapping of Course ILOs to Assessment Tasks

Assessed Task Mapped ILOs Exp		Explanation
Exercise for Lesson 2	ILO1, ILO4	This task assesses students' ability to define basic programming elements such as variables, loops and functions in VBA (ILO 1), design, write and debug computer programs in VBA (ILO 4).
Exercise for Lesson 3	ILO1, ILO2, ILO4	This task assesses students' ability to define basic programming elements such as variables, loops and functions in VBA (ILO 1), describe data structures and data abstraction in VBA (ILO 2), design, write and debug computer programs in VBA (ILO 4).
Exercise for Lesson 4 ILO1, ILO2, ILO4		This task assesses students' ability to define basic programming elements such as variables, loops and functions in VBA (ILO 1), describe data structures and data abstraction in

		VBA (ILO 2), design, write and debug computer programs in VBA (ILO 4).
Exercise for Lesson 5	ILO1, ILO2, ILO3, ILO4	This task assesses students' ability to define basic programming elements such as variables, loops and functions in VBA (ILO 1), describe data structures and data abstraction in VBA (ILO 2), implement advanced programming concepts in VBA (ILO 3), design, write and debug computer programs in VBA (ILO 4).
Final examination	ILO1, ILO2, ILO3, ILO4	This task assesses students' ability to define basic programming elements such as variables, loops and functions in VBA (ILO 1), describe data structures and data abstraction in VBA (ILO 2), implement advanced programming concepts in VBA (ILO 3), design, write and debug computer programs in VBA (ILO 4).

Grading Rubrics

The following rubrics outline the criteria used to evaluate each ILO, applicable to all assessment tasks involving these ILOs.

Criteria	Pass			Fail	
	Excellent	Good	Satisfactory	Needs Improvement	Unsatisfactory
Understanding of Basic Elements	Clearly defines and effectively uses variables, control structures, loops, and functions in VBA.	Defines and uses basic elements with minor errors.	Basic definitions are present, but application is inconsistent.	Limited definitions and frequent errors in usage.	Fails to define or use basic programming elements.
Data Structures and Abstraction	Provides clear descriptions and effectively uses data structures and abstraction techniques in VBA.	Describes data structures with minor inaccuracies; some application present.	Basic descriptions of data structures; application is minimal.	Limited understanding of data structures; few applications.	Fails to describe or apply data structures.
Implementation of Advanced Concepts	Effectively implements advanced programming concepts (e.g., OOP, recursion)	Implements advanced concepts with minor errors or inefficiencies.	Basic implementation present but lacks depth or consistency.	Struggles to implement advanced concepts; frequent errors.	Unable to implement advanced programming concepts.

	with high proficiency.				
Design, Writing, and Debugging	Designs, writes, and debugs programs with exceptional clarity and efficiency.	Generally designs and writes clear programs; debugging is mostly effective.	Programs are functional but lack clarity; debugging is minimal.	Poor program design and writing; debugging efforts are ineffective.	Fails to design, write, or debug programs.

Final Grade Descriptors:

Grades	Short Description	Elaboration on subject grading description		
Ρ	Pass	Possesses adequate knowledge of core subject matter, competence in dealing with familiar problems, and some capacity for analysis and critical thinking. Shows persistence and effort to achieve broadly defined learning goals.		
F	Fail	Demonstrates insufficient understanding of the subject matter and lacks the necessary problem-solving skills. Shows limited ability to think critically or analytically and exhibits minimal effort towards achieving learning goals. Does not meet the threshold requirements for professional practice or development in the discipline.		

Course AI Policy

The use of generative artificial intelligence is not allowed in all assessment tasks.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of submission. Feedback on assignments will include detailed scores in various tasks and their grading criteria. Students who have further questions about the feedback including marks should consult the instructor within five working days after the feedback is received.

Resubmission Policy

Resubmission is not permitted for the course.

Required Texts and Materials

N/A

Academic Integrity

Students are expected to adhere to the university's academic integrity policy. Students are expected to uphold HKUST's Academic Honor Code and to maintain the highest standards of academic integrity. The

University has zero tolerance of academic misconduct. Please refer to <u>Academic Integrity | HKUST –</u> <u>Academic Registry</u> for the University's definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

Online course content to be published in HKUST canvas when the semester begins.