Department of Civil and Environmental Engineering

Course code	CIVL 2120
Course title	Mechanics of Materials
Lectures	3:00PM - 5:50PM, every Tue & Thu, Jun 18, 2024–Aug 1, 2024 (Rm 4502)
Tutorials	4:00PM - 5:50PM, every Wed, Jun 18, 2024–Aug 1, 2024 (Rm 4502)
Final exam date	In Aug (to be arranged with ARO)
Instructor	Prof. Thomas W.C. HU (thomashu@ust.hk)
	Office: 3585 (Lift 27/28) Phone: 2358-7179
Teaching Assistants	TBA
Prerequisite	Statics (CIVL 2110 or equivalent course)
Credits	3
Textbook (recommended)	Beer, Mechanics of Materials (newest), McGraw-Hill
Course objectives	Upon successful completion of this course, students should be able to:
	• understand basic concepts of stress, strain, and Hooke's Law
	• calculate stresses and deformation in axially loaded members
	• calculate stresses and deformation for shafts under torsion
	• produce shear and moment diagrams of a beam (efficiently)
	 calculate normal and shear stresses in beams
	 select appropriate beam cross-sections for given loading conditions
	select appropriate ocall cross-sections for given loading conditions
	• obtain deale deficition using different methods such as superposition
	and direct ODE solving
	• use Monr's circle to find principal stresses and angles for plane stress
Topics	1. Statics Review: Introduction
Topies	2: Stress and Strain: A vial Loading
	2. Sites and Sitani, Axia Loading 3. Torsion
	4: Pure Bending + Review: Beam analysis with singularity functions
	5: Analysis and Design of Beams for Bending
	6: Shearing Stresses in Beams
	7: Transformation of Stress and Strain
	8: Principal Stresses Under a Given Loading
	9. Deflection of Beams
	Optional topics if time permits: Columns: Energy Methods: Truss analysis
	with matrix method
Computer usage	• CAS calculators are used for efficient equation solving numerical work
Computer usage	and graphing etc
	 Free trial software & free loan of handhelds will be provided
Lah work	• Free that software & free foan of handheids will be provided.
Contribution to the	100% engineering tonics
professional component	10070 engineering topics
Relationship to	1 Provide professional skills in design construction and management
nrogram objectives	This course provides students with the basic knowledge of mechanics of
program objectives	materials, which is essential in the analysis and design of engineering
	structures
Contribution to the professional component Relationship to program objectives	 100% engineering topics 1. Provide professional skills in design, construction and management This course provides students with the basic knowledge of mechanics of materials, which is essential in the analysis and design of engineering structures.

The Hong Kong University of Science and Technology

	3. Stimulate self-learning and innovative problem solving skills
	Various teaching innovations such as animation videos and CAS
	(computer algebra systems) are utilized in this class. These allow students
	to visualize and solve problems more effectively and efficiently, and
	explore further on their own (e.g., visualizing how beam deflections
	change as loading conditions vary)
Relationship to CIVL and	1. Acquire fundamental knowledge in mathematics and science
CIEV program outcomes	Engineering mathematics and Newton's laws are applied throughout this course.
	2. Understand fundamental principles of engineering science
	Students will learn various engineering principles for stress analysis such as Hooke's Law, superposition and energy methods, etc.
	4. Apply modern engineering and IT tools for analysis and design
	Revolutionary methods utilizing CAS calculator and AutoCAD are taught
	to solve problems more efficiently and effectively than traditional methods allow.
	5 Formulate problems and propose feasible solutions
	Students will apply the theories learned in class to formulate stress
	analysis and simple design problems, and obtain solutions on their own.
	6. Design civil engineering components
	Students will learn to select proper size, shape and material for structural
	members to meet design requirements on stress, deflection and cost, etc.
Assessment of	Due to the unreasonably tight summer schedule (7 weeks to cover 13 weeks'
outcomes	material), assessment is somewhat different from regular semester's:
	 Midterm (30%) (closed book; one A4 formula sheet allowed)
	• Midterm coverage: Ch. 1 - 3 (these 3 chapters will <u>not</u> be covered
	again on final exam) (closed book; one A4 formula sheet allowed)
	Final exam (50%) (closed book; two A4 formula sheets allowed)
	• Final coverage: Ch. 4 - end of course <u>except</u> Ch. 9
	Group project (20%) (two students per group with similar background)
	• Your project will mainly concern Ch. 9, applying CAS
	+ singularity functions methods from this course to expedite
	otherwise tedious beam problems from
	i. 2110 (if that's all you've taken), or
	ii. 2120 (if you just failed 2120 in spring), or
	111. 3310 (if you prefer more challenging problems)
	• More details will be given before Ch. 9 starts
	• Each group to submit a report (PDF/PPT format) via canvas +
	your YouTube presentation (provide link on first page of
	report)
Prepared by	Prof. Thomas Hu
Updated	June 11 2024