

**The Hong Kong University of Science and Technology**

**UG Course Syllabus (Spring 2025-26)**

[Course Title] Computer Organization

[Course Code] COMP 2611

[No. of Credits] 4 credits

[Any pre-/co-requisites] COMP 2011 or COMP 2012H; Exclusion(s): ELEC 2350

**Name:** Dr. Cindy Xin LI and Dr. Alex Ngok Lam

**Email:** [lixin@ust.hk](mailto:lixin@ust.hk) and [lamngok@ust.hk](mailto:lamngok@ust.hk)

**Course Description**

Inner workings of modern digital computer systems and tradeoffs at the hardware-software interface. Topics include: digital logic, data and instruction representation, instruction set architecture, assembly language programming, computer arithmetic, processor, pipelining, and memory systems. Prerequisite(s): COMP 2011 OR COMP 2012H. Exclusion(s): ELEC 2300, ELEC 2350

**List of Topics**

Introduction of digital logic  
Data representation  
MIPS ISA and assembly  
Computer Arithmetic  
Processor: Datapath and Control  
Pipelined Processor  
Memory System

**Intended Learning Outcomes (ILOs)**

By the end of this course, students should be able to:

1. Understand the basic concepts of digital logic and build the small circuits involved in computer systems
2. Describe the interaction between software and hardware and instruction set architecture
3. Write and execute small programs of a few hundred lines in assembly language
4. Define the basic concepts of modern computer hardware, including datapath, control, memory and input/output
5. Describe the organizational paradigms that determine the capability and performance of computer systems

**Assessment and Grading**

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed rubrics for each assignment are provided below, outlining the criteria used for evaluation.

**Assessments:**

| Assessment Task        | Contribution to Overall Course grade (%) | Due date          |
|------------------------|------------------------------------------|-------------------|
| Mid-Term               | 30%                                      | Week 7            |
| 4 Homework             | 15%                                      | Week 3, 5, 9, 11  |
| Programming Assignment | 15%                                      | Week 13           |
| Final examination      | 40%                                      | Final exam period |

\* Assessment marks for individual assessed tasks will be released within two weeks of the due date.

**Mapping of Course ILOs to Assessment Tasks**

| Assessed Task                  | Mapped ILOs   | Explanation                                                                                                                                                        |
|--------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual homework            | ILO1, 2, 5    |                                                                                                                                                                    |
| Individual programming project | ILO3          | Continuous assessments which are designed to measure how well students have learned the fundamentals and major concepts of computer organization and architecture. |
| Midterm                        | ILO1, 2, 4, 5 |                                                                                                                                                                    |
| Final exam                     | ILO1, 2, 4, 5 | Final examination questions are designed to see how far students have achieved their intended learning outcomes.                                                   |

**Grading Rubrics**

**Final Grade Descriptors:**

| Grades | Short Description     | Elaboration on subject grading description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A      | Excellent Performance | Demonstrates thorough theoretic knowledge of digital logic design principles. Has a high degree of correctness in designing small circuits. Demonstrates thorough knowledge and understanding of the design principles of instruction set architecture. Program correctly handles all specified test cases. The code is very efficient with clear logic, easy to read and understand. Demonstrates thorough theoretic knowledge of computer hardware and design principles. Has a high degree of correctness in describing datapath and control of given machine instruction, and memory structure. Able to clearly analyze and compare computer performance in all given circumstance. |
| B      | Good Performance      | Demonstrates sufficient theoretic knowledge of digital logic design principles. Has a considerable degree of correctness in designing small circuits. Demonstrates sufficient knowledge and understanding of the design principles of instruction set architecture. Program correctly handles majority of test cases. The code is fairly efficient, easy to read and understand.                                                                                                                                                                                                                                                                                                        |

|        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                          | Demonstrates sufficient theoretic knowledge of computer hardware and design principles. Has a considerable degree of correctness in describing datapath and control of given machine instruction, and memory structure. Able to analyze and compare computer performance in most given circumstances.                                                                                                                                                                                                                                                                                                                                                                 |
| C      | Satisfactory Performance | Demonstrates some theoretic knowledge of digital logic design principles. Has some degree of correctness in designing small circuits. Demonstrates some knowledge and understanding of the design principles of instruction set architecture. Program correctly handles around half of test cases. The code works because of brute force; it's not easy to read and understand. Demonstrates some theoretic knowledge of computer hardware and design principles. Has some degree of correctness in describing datapath and control of given machine instruction, and memory structure. Able to analyze and compare computer performance in some given circumstances. |
| D or F | Marginal Pass<br>Fail    | Demonstrates limited theoretic knowledge of digital logic design principles. Has a low degree of correctness in designing small circuits. Demonstrates limited knowledge and understanding of the design principles of instruction set architecture. Program fails majority of test cases. The code is huge and appears to be patched together without logic. Demonstrates limited theoretic knowledge of computer hardware and design principles. Has a low degree of correctness in describing datapath and control of given machine instruction, and memory structure. Fails to analyze and compare computer performance in most given circumstances.              |

### **Course AI Policy**

No generative artificial intelligence tools should be used to complete assessment tasks.

### **Communication and Feedback**

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of submission. Students are allowed to review their marks and send appealing requests within three working days.

### **Resubmission Policy**

No resubmission of assessment tasks. Student with difficulties (e.g. psychological, special education needs, etc.) should approach the instructor before the deadline

### **Required Texts and Materials**

Computer Organization and Design MIPS Edition: The Hardware/Software Interface  
6th Edition

### **Academic Integrity**

Students are expected to adhere to the university's academic integrity policy. Students are expected to uphold HKUST's Academic Honor Code and to maintain the highest standards of academic integrity. The University has zero tolerance of academic misconduct. Please refer to [Academic Integrity | HKUST – Academic Registry](#) for the University's definition of plagiarism and ways to avoid cheating and plagiarism.

#### **Additional Resources**

N/A