The Hong Kong University of Science and Technology

UG Course Syllabus (Spring 2025-26)

[Course Title] Object-Oriented Programming and Data Structures
[Course Code] COMP 2012
[No. of Credits] 4 credits

[Any pre-/co-requisites] COMP 2011

Name: CHAN Cecia, MAK Brian, SANDER Pedro

Email: kccecia@ust.hk, bmak@ust.hk, psander@ust.hk

Course Description

To learn the fundamental concepts and techniques behind object-oriented programming. They include
abstract data types; creation, initialization, and destruction of objects; class hierarchies; polymorphism,
inheritance, and dynamic binding; generic programming using templates. To learn the object-oriented view
of data structures: linked lists, stacks, queues, binary trees, and algorithms such as searching and hashing.

List of Topics

Revision of dynamic data structures
C++ class basics

Separation compilation and makefile
Constructors, destructor, initialization
Inheritance, polymorphism, and dynamic binding
Generic programming

Namespace

Static member functions/data

. rvalue reference and move semantics
10. Hashing

11. Binary search trees

12. STL (optional)

© R NOU A BN

Intended Learning Outcomes (ILOs)
By the end of this course, students should be able to:

1. Write and analyze object-oriented programs in C++ with object creation, destruction, member variables
and functions, inheritance, polymorphism, and templates.

2. Analyze simple problems and provide solutions with OOP.

3. Understand the basic operations of data structures such as stacks, queues, lists, binary search trees, and
hashes, and their implementations.

4. Demonstrate the ability to use the learned data structures to solve problems in C++.

5. Develop large programs using separate compilation, good OOP design, and code reuse through the use
of inheritance, and generic programming.

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed
rubrics for each assignment are provided below, outlining the criteria used for evaluation.

Assessments:
Assessment Task Contribution to Overall Due date
Course grade (%)
Mid-Term 26% TBD
Laboratory exercises 10% Weekly Basis (6-8 weeks during term)
Programming assignments 24% Three Pas: 15/3, 31/3, 10/5
Final examination 40% TBD

* Assessment marks for individual assessed tasks will be released within two weeks of the due date.

Mapping of Course ILOs to Assessment Tasks

Assessed Task Mapped ILOs Explanation

This task assesses students’ ability to
write and analyze object-oriented
programs in C++ (ILO 1), analyze
Laboratory exercises ILO1-4 simple problems and solve them in
C++ (ILO 2), understand the basic
operations of data structures and use
them to solve problems (ILO 3 & 4).

As with the above task, this task
assesses students’ ability to write and
analyze object-oriented programs in
C++ (ILO 1), analyze simple problems
and solve them in C++ (ILO 2),
understand the basic operations of
data structures and use them to solve
problems (ILO 3 & 4). Moreover, it
assesses students’ abilities to apply
these skills to revelop large programs
(ILO 5).

Programming assignments ILO1-5

These exams are designed in order to
assesses students’ ability to write and
analyze object-oriented programs in
C++ (ILO 1), analyze simple problems
and solve them in C++ (ILO 2),

Midterm and Final Exam ILO1-4

understand the basic operations of
data structures and use them to solve
problems (ILO 3 & 4).

Grading Rubrics

The following rubrics are posted on the course website at the beginning of the semester.

Task Learning
Outcome
1. Write and
analyze object-
oriented
programs in C++
with object
creation,

destruction,
member variables
and functions,
inheritance,
polymorphism,
and templates.

2. Analyze simple

problems and
provide solutions
with OOP.

3. Understand the
basic operations
of data structures

such as stacks,
gueues, lists,
binary search
trees, and hashes,
and their

implementations.

4. Demonstrate
the ability to use
the learned data
structures to
solve problems in
C++

Exemplary

Demonstrate a
comprehensive
grasp of object-

oriented
concepts and
fully
demonstrates
how to write

object-oriented
programs in C++.

Demonstrate an

exemplary
ability to analyze
problems and

solve them using
OOP.

Demonstrate
excellent
understanding
of the basic
operations of
the learned data

structures and
ability to
implement
them.

Demonstrate an
exemplary
ability to use the
learned data
structures to
solve problems
in C++.

Competent

Demonstrate a
thorough grasp

of object-
oriented
concepts and
mostly
demonstrates
how to write

object-oriented
programs in C++.

Demonstrate a
proficient ability
to analyze
problems and
solve them using
OOP.

Demonstrate
sufficient
understanding
of the basic
operations of
the learned data

structures and
ability to
implement
them.

Demonstrate a
proficient ability
to use the
learned data
structures to
solve problems
in C++.

Needs Work Unsatisfactory

Demonstrate a basic | Demonstrate a lack of grasp

grasp of object- | of object-oriented concepts
oriented concepts | and fail to demonstrate
and barely able to | how to write object-

demonstrate how to
write object-oriented
programs in C++.

oriented programs in C++.

Demonstrate a | Demonstrate deficiencies in
developing ability to | their ability to analyze
analyze problems and | problems and solve them
solve them using | using OOP.

OO0P.

Demonstrate limited | Demonstrate a lack of

understanding of the basic
operations of the learned
data structures and inability
to implement them.

understanding of the
basic operations of
the learned data
structures and limited
ability to implement
them.

Demonstrate deficiencies in
the ability to use the
learned data structures to
solve problems in C++.

Demonstrate a
developing ability to
use the learned data
structures to solve
problems in C++.

5. Develop large | Demonstrate

programs
separate

using | complete
comprehension

compilation, good | of OOP concepts
OOP design, and | and techniques

code

reuse | for the

through the use | development of
of inheritance, | large programs.

and

generic

programming.

Final Grade Descriptors:

Demonstrate Demonstrate minimal | Demonstrate

basic comprehension of | comprehension of
comprehension | OOP concepts and | concepts and techniques
of OOP concepts | techniques for the | for the development of
and techniques | development of large | large programs.
for the | programs.

development of

large programs.

Grades

Short Description

Elaboration on subject grading description

Excellent Performance

This student excels in object-oriented programming (OOP) with
C++, demonstrating a strong ability to design, analyze, and solve
problems using OOP principles. They have a deep understanding
of data structures, skillfully implementing and applying them to
optimize solutions. Their proficiency in OOP techniques also
enables them to develop scalable and well-structured programs
for complex projects.

Good Performance

This student shows a solid grasp of object-oriented programming
(OOP) in C++, capably designing and implementing object-
oriented solutions for most problems. They understand core data
structures and can effectively implement and apply them to solve
programming challenges. While their OOP skills are proficient,
they are still developing techniques for scaling programs to more
complex, large-scale applications.

Satisfactory Performance

This student has a foundational understanding of object-oriented
programming (OOP) in C++ and can apply basic OOP concepts with
some guidance. They are capable of analyzing simple problems
and implementing basic data structures, though they would
benefit from further practice to strengthen their skills. With
continued effort, they can develop a more robust ability to apply
OOP principles and data structures to larger, more complex
programs.

Marginal Pass

This student demonstrates a threshold understanding of object-
oriented programming (OOP) in C++, sometimes struggling to
apply OOP concepts effectively in their code. While they show
some ability to analyze problems and use data structures their
comprehension of C++ and OOP techniques for larger programs is
minimal, but can potentially be improved based on knowledge
from this course.

Fail

This student has failed to demonstrate a functional understanding
of object-oriented programming (OOP) concepts in C++ and
cannot write proper object-oriented programs. Their ability to
analyze problems or implement solutions using OOP and data
structures is severely lacking, showing no viable application of
these concepts in practice. Additionally, they exhibit no
comprehension of how to use OOP techniques for program
development, falling short of even basic course expectations.

Course Al Policy

Generative artificial intelligence tools like ChatGPT or similar software are not allowed for labs and
programming assignments. This has been clearly communicated to the students. The rational behind this is
that this course teaches fundamental coding techniques in C++ and students need to learn and apply correct
programming techniques, syntax, and development; relying on generative Al tools can hamper this, at their
current level of programming understanding.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of
submission. Feedback on assignments will include detailed grading, and itemized marks deduction. We also
provide template solutions to offer students the chance to improve their skills and correct their errors.
Students who have further questions about the feedback including marks should consult the grader and
instructor within a few working days after the feedback is received.

Resubmission Policy

No resubmission of assessment tasks allowed.

Required Texts and Materials

Textbooks

Paul Deitel, Deitel & Associates (2017). C++ How to Program.

M.A. Weiss (2014). Data Structures and Algorithm Analysis in C++.

Clifford A Shaffer. Data Structures and Algorithm Analysis Ed. 3.2 (C++ Version; electronic version:
http://people.cs.vt.edu/~shaffer/Book/C++3elatest.pdf.)

Reference books

B. Eckel (2000). Thinking in C++.
L. Nyhoff (2005). ADTs, Data Structures and Problem Solving with C++.

Stanley Lippman (2013). C++ Primer.

Academic Integrity

Students are expected to adhere to the university’s academic integrity policy. Students are expected to
uphold HKUST’s Academic Honor Code and to maintain the highest standards of academic integrity. The
University has zero tolerance of academic misconduct. Please refer to Academic Integrity | HKUST —
Academic Registry for the University’s definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

https://registry.hkust.edu.hk/resource-library/academic-integrity
https://registry.hkust.edu.hk/resource-library/academic-integrity

N/A

