
The Hong Kong University of Science and Technology

UG Course Syllabus (Spring 2025-26)

[Course Title] Object-Oriented Programming and Data Structures

[Course Code] COMP 2012

[No. of Credits] 4 credits

[Any pre-/co-requisites] COMP 2011

Name: CHAN Cecia, MAK Brian, SANDER Pedro

Email: kccecia@ust.hk, bmak@ust.hk, psander@ust.hk

Course Description

To learn the fundamental concepts and techniques behind object-oriented programming. They include

abstract data types; creation, initialization, and destruction of objects; class hierarchies; polymorphism,

inheritance, and dynamic binding; generic programming using templates. To learn the object-oriented view

of data structures: linked lists, stacks, queues, binary trees, and algorithms such as searching and hashing.

List of Topics

1. Revision of dynamic data structures

2. C++ class basics

3. Separation compilation and makefile

4. Constructors, destructor, initialization

5. Inheritance, polymorphism, and dynamic binding

6. Generic programming

7. Namespace

8. Static member functions/data

9. rvalue reference and move semantics

10. Hashing

11. Binary search trees

12. STL (optional)

Intended Learning Outcomes (ILOs)

By the end of this course, students should be able to:

1. Write and analyze object-oriented programs in C++ with object creation, destruction, member variables

and functions, inheritance, polymorphism, and templates.

2. Analyze simple problems and provide solutions with OOP.

3. Understand the basic operations of data structures such as stacks, queues, lists, binary search trees, and

hashes, and their implementations.

4. Demonstrate the ability to use the learned data structures to solve problems in C++.

5. Develop large programs using separate compilation, good OOP design, and code reuse through the use

of inheritance, and generic programming.

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed

rubrics for each assignment are provided below, outlining the criteria used for evaluation.

Assessments:

Assessment Task
Contribution to Overall

Course grade (%)
Due date

Mid-Term 26% TBD

Laboratory exercises 10% Weekly Basis (6-8 weeks during term)

Programming assignments 24% Three Pas: 15/3, 31/3, 10/5

Final examination 40% TBD

 * Assessment marks for individual assessed tasks will be released within two weeks of the due date.

Mapping of Course ILOs to Assessment Tasks

Assessed Task Mapped ILOs Explanation

Laboratory exercises ILO1-4

This task assesses students’ ability to
write and analyze object-oriented
programs in C++ (ILO 1), analyze
simple problems and solve them in
C++ (ILO 2), understand the basic
operations of data structures and use
them to solve problems (ILO 3 & 4).

Programming assignments ILO1-5

As with the above task, this task
assesses students’ ability to write and
analyze object-oriented programs in
C++ (ILO 1), analyze simple problems
and solve them in C++ (ILO 2),
understand the basic operations of
data structures and use them to solve
problems (ILO 3 & 4). Moreover, it
assesses students’ abilities to apply
these skills to revelop large programs
(ILO 5).

Midterm and Final Exam ILO1-4

These exams are designed in order to
assesses students’ ability to write and
analyze object-oriented programs in
C++ (ILO 1), analyze simple problems
and solve them in C++ (ILO 2),

understand the basic operations of
data structures and use them to solve
problems (ILO 3 & 4).

Grading Rubrics

The following rubrics are posted on the course website at the beginning of the semester.

Task Learning

Outcome

Exemplary Competent Needs Work Unsatisfactory

1. Write and

analyze object-

oriented

programs in C++

with object

creation,

destruction,

member variables

and functions,

inheritance,

polymorphism,

and templates.

Demonstrate a

comprehensive

grasp of object-

oriented

concepts and

fully

demonstrates

how to write

object-oriented

programs in C++.

Demonstrate a

thorough grasp

of object-

oriented

concepts and

mostly

demonstrates

how to write

object-oriented

programs in C++.

Demonstrate a basic

grasp of object-

oriented concepts

and barely able to

demonstrate how to

write object-oriented

programs in C++.

Demonstrate a lack of grasp

of object-oriented concepts

and fail to demonstrate

how to write object-

oriented programs in C++.

2. Analyze simple

problems and

provide solutions

with OOP.

Demonstrate an

exemplary

ability to analyze

problems and

solve them using

OOP.

Demonstrate a

proficient ability

to analyze

problems and

solve them using

OOP.

Demonstrate a

developing ability to

analyze problems and

solve them using

OOP.

Demonstrate deficiencies in

their ability to analyze

problems and solve them

using OOP.

3. Understand the

basic operations

of data structures

such as stacks,

queues, lists,

binary search

trees, and hashes,

and their

implementations.

Demonstrate

excellent

understanding

of the basic

operations of

the learned data

structures and

ability to

implement

them.

Demonstrate

sufficient

understanding

of the basic

operations of

the learned data

structures and

ability to

implement

them.

Demonstrate limited

understanding of the

basic operations of

the learned data

structures and limited

ability to implement

them.

Demonstrate a lack of

understanding of the basic

operations of the learned

data structures and inability

to implement them.

4. Demonstrate

the ability to use

the learned data

structures to

solve problems in

C++

Demonstrate an

exemplary

ability to use the

learned data

structures to

solve problems

in C++.

Demonstrate a

proficient ability

to use the

learned data

structures to

solve problems

in C++.

Demonstrate a

developing ability to

use the learned data

structures to solve

problems in C++.

Demonstrate deficiencies in

the ability to use the

learned data structures to

solve problems in C++.

5. Develop large

programs using

separate

compilation, good

OOP design, and

code reuse

through the use

of inheritance,

and generic

programming.

Demonstrate

complete

comprehension

of OOP concepts

and techniques

for the

development of

large programs.

Demonstrate

basic

comprehension

of OOP concepts

and techniques

for the

development of

large programs.

Demonstrate minimal

comprehension of

OOP concepts and

techniques for the

development of large

programs.

Demonstrate no

comprehension of OOP

concepts and techniques

for the development of

large programs.

Final Grade Descriptors:

Grades Short Description Elaboration on subject grading description

A Excellent Performance

This student excels in object-oriented programming (OOP) with
C++, demonstrating a strong ability to design, analyze, and solve
problems using OOP principles. They have a deep understanding
of data structures, skillfully implementing and applying them to
optimize solutions. Their proficiency in OOP techniques also
enables them to develop scalable and well-structured programs
for complex projects.

B Good Performance

This student shows a solid grasp of object-oriented programming
(OOP) in C++, capably designing and implementing object-
oriented solutions for most problems. They understand core data
structures and can effectively implement and apply them to solve
programming challenges. While their OOP skills are proficient,
they are still developing techniques for scaling programs to more
complex, large-scale applications.

C Satisfactory Performance

This student has a foundational understanding of object-oriented
programming (OOP) in C++ and can apply basic OOP concepts with
some guidance. They are capable of analyzing simple problems
and implementing basic data structures, though they would
benefit from further practice to strengthen their skills. With
continued effort, they can develop a more robust ability to apply
OOP principles and data structures to larger, more complex
programs.

D Marginal Pass

This student demonstrates a threshold understanding of object-
oriented programming (OOP) in C++, sometimes struggling to
apply OOP concepts effectively in their code. While they show
some ability to analyze problems and use data structures their
comprehension of C++ and OOP techniques for larger programs is
minimal, but can potentially be improved based on knowledge
from this course.

F Fail

This student has failed to demonstrate a functional understanding
of object-oriented programming (OOP) concepts in C++ and
cannot write proper object-oriented programs. Their ability to
analyze problems or implement solutions using OOP and data
structures is severely lacking, showing no viable application of
these concepts in practice. Additionally, they exhibit no
comprehension of how to use OOP techniques for program
development, falling short of even basic course expectations.

Course AI Policy

Generative artificial intelligence tools like ChatGPT or similar software are not allowed for labs and

programming assignments. This has been clearly communicated to the students. The rational behind this is

that this course teaches fundamental coding techniques in C++ and students need to learn and apply correct

programming techniques, syntax, and development; relying on generative AI tools can hamper this, at their

current level of programming understanding.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of

submission. Feedback on assignments will include detailed grading, and itemized marks deduction. We also

provide template solutions to offer students the chance to improve their skills and correct their errors.

Students who have further questions about the feedback including marks should consult the grader and

instructor within a few working days after the feedback is received.

Resubmission Policy

No resubmission of assessment tasks allowed.

Required Texts and Materials

Textbooks

Paul Deitel, Deitel & Associates (2017). C++ How to Program.

M.A. Weiss (2014). Data Structures and Algorithm Analysis in C++.

Clifford A Shaffer. Data Structures and Algorithm Analysis Ed. 3.2 (C++ Version; electronic version:

http://people.cs.vt.edu/~shaffer/Book/C++3elatest.pdf.)

Reference books

B. Eckel (2000). Thinking in C++.

L. Nyhoff (2005). ADTs, Data Structures and Problem Solving with C++.

Stanley Lippman (2013). C++ Primer.

Academic Integrity

Students are expected to adhere to the university’s academic integrity policy. Students are expected to

uphold HKUST’s Academic Honor Code and to maintain the highest standards of academic integrity. The

University has zero tolerance of academic misconduct. Please refer to Academic Integrity | HKUST –

Academic Registry for the University’s definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

https://registry.hkust.edu.hk/resource-library/academic-integrity
https://registry.hkust.edu.hk/resource-library/academic-integrity

N/A

