The Hong Kong University of Science and Technology

UG Course Syllabus (Spring 2025-26)

[Course Title] Programming with C++
[Course Code] COMP 2011
[No. of Credits] 4 credits

[Any pre-/co-requisites] COMP 1023 OR (COMP 1021 AND COMP 1028)

Name: CHAN, Ki Cecia; LI, Xin; WANG, Shuai; YUAN, Linping

Email: kccecia@cse.ust.hk, lixin@cse.ust.hk, shuaiw@cse.ust.hk, yuanlp@cse.ust.hk

Course Description

This course covers programming and data structures using C++. In addition to basic programming concepts
such as variables and control statements, students will learn about arrays, pointers, dynamic data allocation,
linked lists, stacks, queues, binary trees, recursion, and the basics of object-oriented programming.
Prerequisite(s): COMP 1023 OR (COMP 1021 AND COMP 1028).

List of Topics

. Introduction to computer programming
. C++ basics: basic syntax, data types, operators
. Control flow

. Functions

. Array and structure

. Recursion

. Scope

. Struct

. Pointers

10. Dynamic Data

11. Class

12. Stack and Queue

13. File input / output

O 00 NO U B WN -

Intended Learning Outcomes (ILOs)

On successful completion of the course, students will be able to:

1. Use common software tools to develop and debug a program written in an OOP language.

2. Write a short program to solve a simple problem in an OOP language.

3. Demonstrate that recursive and non-recursive functions are abstractions of sub problems in a task.
4. Describe the concept and the use of pointers in indirect addressing and dynamic memory allocation.
5. Demonstrate the use of several data structures.

6. Implement an abstract data type by defining a class in an OOP language.

mailto:kccecia@cse.ust.hk
mailto:lixin@cse.ust.hk
mailto:shuaiw@cse.ust.hk
mailto:yuanlp@cse.ust.hk

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed
rubrics for each assignment are provided below, outlining the criteria used for evaluation.

Assessments:

[List specific assessed tasks, exams, quizzes, their weightage, and due dates; perhaps, add a summary table
as below, to precede the details for each assessment.]

Assessment Task Contribution to Overall Due date
Course grade (%)
Lab exercises 10% Weekly basis, 8 Iab: over the
semester
21/3/2026,
Programming assignments 24% (8%, 8%, 8%) 11/4/2026,
9/5/2026 *
Mid-Term examination 26% TBA (around week 8) *
Final examination 40% TBA (16/5/2026 — 29/5/2026) *

* Assessment marks for individual assessed tasks will be released within two weeks of the due date.
Mapping of Course ILOs to Assessment Tasks

[add to/delete table as appropriate]

Assessed Task Mapped ILOs Explanation

The lab exercises assess the students’ Lab exercises ILO 1-6
capability to use software tools (ILO1), analyze and write
Lab exercises ILO 1-6 code (ILO2), and exercise various specific techniques such as
recursion, pointer manipulation, data structures, and
abstract data types (ILO3-6).

Same as above, but with an emphasis on developing larger
ILO 1-6 programs requiring more advanced techniques and
combining different tools (ILO1 6)

Programming
assignments

The exams assess the students’ understanding of the course
Mid-Term and concepts and capabilities to use them to model small
. o ILO 2-6
Final examinations problems and write code to provide solutions (ILO2-6). Since

the exams are written, we do not assess ILO1.

Grading Rubrics

[Detailed rubrics for each assignment will be provided. These rubrics clearly outline the criteria used for
evaluation. Students can refer to these rubrics to understand how their work will be assessed.]

Task Assessment Exemplary Competent Needs Work Unsatisfactory
for Learning
Outcome

Use common
software tools to
develop and
debug a program
written in C++.

Use an IDE such as
VS Code
proficiently to
write, compile,
run, and debug a
C++ program
consisting of one
or many source
files.

Use an IDE such as
VS Code
effectively to
write, compile,
run, and debug a
C++ program
consisting of one
or many source
files.

Use an IDE such as
VS Code to write,
compile, and run a
C++ program
consisting of one
source file. Have
difficulty in dealing
with programs
consisting of more
than one source
file as well as
debugging.

Have difficulty in
using an IDE such
as VS Code to
write, compile,
run, and debug a
C++ program
consisting of one
source file without
guidance.

Write and analyze
short programs
that solve simple
problems in C++.

Construct a
solutionto a
written problem
by writing a
complete C++
program of no
more than 500
lines of codes on

Construct a
solutionto a
written problem
by writing a
complete C++
program of no
more than 500
lines of codes on

Require assistance
to break down a
written problem
into sub-problems
of sufficiently
small sizes before
being able to
construct a

Is unable to
construct a
solution to a
written problem
by writing a
complete C++
program even
under guidance.

one's own. one's own if the solution for each Skeleton code
requirements are sub problem with | need to be given
clearly explained no more than 100 | which breaks
and the required lines of codes. The | down the solution
programming required into a set of small
constructs are programming functions with
told. constructs also clear interface so
need to be told. that the student
may be able to
implement them.
Demonstrate that | Demonstrate Demonstrate Demonstrate Is unable to
recursive and non | thorough sufficient insufficient understand how

recursive functions
are abstractions of
sub-problemsin a
task.

understanding of
how recursion
works. Be able to
develop a
recursive solution
to a written
problem on one's
own, and
sometimes
contrast it with
the corresponding
non-recursive

understanding of
how recursion
works. Be able to
develop a
recursive solution
to a written
problem if given
the recursive
algorithm, and
sometimes
contrast it with the
corresponding

understanding of
how recursion
works. Be able to
develop recursive
solutions only to
some simple
problems, and
only if the
recursive
algorithm is given.
Cannot contrast
the recursive

recursion works. Is
unable to develop
recursive solutions
to problems even
if the recursive
algorithm is given.

solution. non-recursive solution with the
solution. corresponding
non-recursive
solution.
Understand and Demonstrate Demonstrate Demonstrate Demonstrate little
demonstrate the strong sufficient marginal understanding of

use of pointers in
indirect addressing
and dynamic

understanding of
the concept of
pointers. Is able to
use pointers

understanding of
the concept of
pointers. Is able
use pointers

understanding of
the concept of
pointers. Is able to
use pointersin

the concept of
pointers. Have
great difficulty in
using pointers in

memory
allocation.

effectively in
indirect addressing
and dynamic
memory allocation
in a great variety
of scenarios.

effectively in
indirect addressing

indirect addressing
and dynamic

and dynamic memory allocation
memory allocation | only in simple

in standard scenarios.
scenarios.

indirect addressing
and dynamic
memory allocation
even in simple
scenarios.

Understand and
demonstrate the
use of various data
structures.

Is able to choose
the appropriate
data structures
such as linked lists,
stacks and queues
to solve problems,
and implement
the solution in C++
on one's own.

Is able to use the
required data
structures such as
linked lists, stacks
and queues to
solve problems,
and implement
the solution in C++
on one's own.

Is able to use the
required data
structures such as
linked lists, stacks
and queues to
solve simple
problems, and
implement the
solution in C++
with guidance.

Demonstrate little
understanding of
data structures
such as linked lists,
stacks and queues,
and is unable to
use them to solve
problems even
with guidance.

Implement an
abstract data type
(ADT) by defining a
class in C++.

Given the
description of a
simple ADT, is able
to implement it
with a complete
C++ class
definition that
includes
appropriate class
members and class
member functions.
Is able to write
programs that
create and
manipulate ADT
objects.

Given the Given the
description of a description of the
simple ADT, able C++ class

to implement it definition of a
with a complete simple ADT,

C++ class
definition when its
class members and
class member
functions are also
hinted. Is able to
write programs
that create and
manipulate ADT
objects.

including its class
members and class
member functions,
is able to
implement the
member functions.
Sometimes is able
to write programs
that create and
manipulate ADT
objects

Have great
difficulty in
understanding the
link between a
simple ADT and its
C++ definition. Is
unable to
complete C++
definition for
simple ADTs and
to program with
C++ classes.

Final Grade Descriptors:

[As appropriate to the course and aligned with university standards]

Grades

Short Description

Elaboration on subject grading description

A Excellent Performance

This student excels in C++ programming, expertly using IDEs to
write, debug, and manage code while independently solving
problems with well-structured programs under 500 lines. They
demonstrate mastery of recursion,
memory allocation, applying them effectively in diverse scenarios,
and can skillfully implement data structures like linked lists,

pointers, and dynamic

stacks, and queues. Additionally, they can design robust C++
classes for abstract data types (ADTs) and manipulate objects with

precision.

Good Performance

This student demonstrates solid C++ skills, competently using IDEs
to develop and debug programs while solving well-defined
problems (under 500 lines) when given clear requirements. They

understand recursion, pointers, and dynamic memory allocation
well enough to apply them in standard scenarios, and can
implement basic data structures like linked lists, stacks, and
queues independently. With some guidance, they can also design
simple ADTs as C++ classes and manipulate objects effectively.

This student has achieved satisfactory proficiency in foundational
C++ programming, capably writing and running single-file
programs in VS Code while beginning to explore multi-file projects
with some guidance. They can break down and solve well-defined
problems (under 100 lines) when given structural support,
demonstrating growing competence with core programming
constructs. While their understanding of recursion, pointers, and
data structures is not fully developed, they can apply these
notions. With continued effort, they are well-positioned to
solidify these skills for more complex tasks.

This student shows minimal C++ proficiency, (e.g., handling only
basic single-file programs and requiring extensive help with multi-
file projects or debugging). They solve small problems (under 100
lines) when given step by-step guidance and pre-divided tasks.
Their grasp of advanced notion is weak, often misapplying
concepts, and they depend heavily on examples. With significant
effort and using this course as a basis, the student can strengthen
their skills.

C Satisfactory Performance
D Marginal Pass
F Fail

This student has failed to demonstrate basic C++ programming
competency. They cannot independently write, compile, or debug
simple programs, requiring extensive step-by-step guidance for
every task. Fundamental programming concepts are not
understood, and they are unable to solve problems or implement
solutions even with significant support. Their performance shows
no evidence of meeting the course's minimum learning
objectives.

Course Al Policy

Generative artificial intelligence tools like ChatGPT or similar software are not allowed for labs and
programming assignments. This has been clearly communicated to the students. The rational behind this is
that this course teaches fundamental coding techniques in C++ and students need to learn and apply correct
programming techniques, syntax, and development; relying on generative Al tools can hamper this, at their
current level of programming understanding.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of
submission. Feedback on assignments will include detailed grading, and itemized marks deduction. We also
provide template solutions to offer students the chance to improve their skills and correct their errors.

Students who have further questions about the feedback including marks should consult the grader and
instructor within a few working days after the feedback is received.

Resubmission Policy

No resubmission of assessment tasks allowed.

Required Texts and Materials

Big C++: Late Objects, 3rd Edition
Cay S. Horstmann
eBook ISBN: 9781119402978

Academic Integrity

Students are expected to adhere to the university’s academic integrity policy. Students are expected to
uphold HKUST’s Academic Honor Code and to maintain the highest standards of academic integrity. The
University has zero tolerance of academic misconduct. Please refer to Academic Integrity | HKUST —
Academic Registry for the University’s definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

N.A.

https://registry.hkust.edu.hk/resource-library/academic-integrity
https://registry.hkust.edu.hk/resource-library/academic-integrity

