
The Hong Kong University of Science and Technology

UG Course Syllabus (Spring 2025-26)

[Course Title] Programming with C++

[Course Code] COMP 2011

[No. of Credits] 4 credits

[Any pre-/co-requisites] COMP 1023 OR (COMP 1021 AND COMP 1028)

Name: CHAN, Ki Cecia; LI, Xin; WANG, Shuai; YUAN, Linping

Email: kccecia@cse.ust.hk, lixin@cse.ust.hk, shuaiw@cse.ust.hk, yuanlp@cse.ust.hk

Course Description

This course covers programming and data structures using C++. In addition to basic programming concepts

such as variables and control statements, students will learn about arrays, pointers, dynamic data allocation,

linked lists, stacks, queues, binary trees, recursion, and the basics of object-oriented programming.

Prerequisite(s): COMP 1023 OR (COMP 1021 AND COMP 1028).

List of Topics

1. Introduction to computer programming

2. C++ basics: basic syntax, data types, operators

3. Control flow

4. Functions

5. Array and structure

6. Recursion

7. Scope

8. Struct

9. Pointers

10. Dynamic Data

11. Class

12. Stack and Queue

13. File input / output

Intended Learning Outcomes (ILOs)

On successful completion of the course, students will be able to:

1. Use common software tools to develop and debug a program written in an OOP language.

2. Write a short program to solve a simple problem in an OOP language.

3. Demonstrate that recursive and non-recursive functions are abstractions of sub problems in a task.

4. Describe the concept and the use of pointers in indirect addressing and dynamic memory allocation.

5. Demonstrate the use of several data structures.

6. Implement an abstract data type by defining a class in an OOP language.

mailto:kccecia@cse.ust.hk
mailto:lixin@cse.ust.hk
mailto:shuaiw@cse.ust.hk
mailto:yuanlp@cse.ust.hk

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed

rubrics for each assignment are provided below, outlining the criteria used for evaluation.

Assessments:

[List specific assessed tasks, exams, quizzes, their weightage, and due dates; perhaps, add a summary table

as below, to precede the details for each assessment.]

Assessment Task
Contribution to Overall

Course grade (%)
Due date

Lab exercises 10%
Weekly basis, 8 labs over the

semester *

Programming assignments

24% (8%, 8%, 8%)

21/3/2026,
11/4/2026,
9/5/2026 *

Mid-Term examination 26% TBA (around week 8) *
Final examination 40% TBA (16/5/2026 – 29/5/2026) *

* Assessment marks for individual assessed tasks will be released within two weeks of the due date.

Mapping of Course ILOs to Assessment Tasks

[add to/delete table as appropriate]

Assessed Task Mapped ILOs Explanation

Lab exercises

ILO 1-6

The lab exercises assess the students’ Lab exercises ILO 1-6
capability to use software tools (ILO1), analyze and write
code (ILO2), and exercise various specific techniques such as
recursion, pointer manipulation, data structures, and
abstract data types (ILO3-6).

Programming
assignments

ILO 1-6

Same as above, but with an emphasis on developing larger
programs requiring more advanced techniques and
combining different tools (ILO1 6)

Mid-Term and
Final examinations

ILO 2-6

The exams assess the students’ understanding of the course
concepts and capabilities to use them to model small
problems and write code to provide solutions (ILO2-6). Since
the exams are written, we do not assess ILO1.

Grading Rubrics

[Detailed rubrics for each assignment will be provided. These rubrics clearly outline the criteria used for

evaluation. Students can refer to these rubrics to understand how their work will be assessed.]

Task Assessment
for Learning
Outcome

Exemplary Competent Needs Work Unsatisfactory

Use common
software tools to
develop and
debug a program
written in C++.

Use an IDE such as
VS Code
proficiently to
write, compile,
run, and debug a
C++ program
consisting of one
or many source
files.

Use an IDE such as
VS Code
effectively to
write, compile,
run, and debug a
C++ program
consisting of one
or many source
files.

Use an IDE such as
VS Code to write,
compile, and run a
C++ program
consisting of one
source file. Have
difficulty in dealing
with programs
consisting of more
than one source
file as well as
debugging.

Have difficulty in
using an IDE such
as VS Code to
write, compile,
run, and debug a
C++ program
consisting of one
source file without
guidance.

Write and analyze
short programs
that solve simple
problems in C++.

Construct a
solution to a
written problem
by writing a
complete C++
program of no
more than 500
lines of codes on
one's own.

Construct a
solution to a
written problem
by writing a
complete C++
program of no
more than 500
lines of codes on
one's own if the
requirements are
clearly explained
and the required
programming
constructs are
told.

Require assistance
to break down a
written problem
into sub-problems
of sufficiently
small sizes before
being able to
construct a
solution for each
sub problem with
no more than 100
lines of codes. The
required
programming
constructs also
need to be told.

Is unable to
construct a
solution to a
written problem
by writing a
complete C++
program even
under guidance.
Skeleton code
need to be given
which breaks
down the solution
into a set of small
functions with
clear interface so
that the student
may be able to
implement them.

Demonstrate that
recursive and non
recursive functions
are abstractions of
sub-problems in a
task.

Demonstrate
thorough
understanding of
how recursion
works. Be able to
develop a
recursive solution
to a written
problem on one's
own, and
sometimes
contrast it with
the corresponding
non-recursive
solution.

Demonstrate
sufficient
understanding of
how recursion
works. Be able to
develop a
recursive solution
to a written
problem if given
the recursive
algorithm, and
sometimes
contrast it with the
corresponding
non-recursive
solution.

Demonstrate
insufficient
understanding of
how recursion
works. Be able to
develop recursive
solutions only to
some simple
problems, and
only if the
recursive
algorithm is given.
Cannot contrast
the recursive
solution with the
corresponding
non-recursive
solution.

Is unable to
understand how
recursion works. Is
unable to develop
recursive solutions
to problems even
if the recursive
algorithm is given.

Understand and
demonstrate the
use of pointers in
indirect addressing
and dynamic

Demonstrate
strong
understanding of
the concept of
pointers. Is able to
use pointers

Demonstrate
sufficient
understanding of
the concept of
pointers. Is able
use pointers

Demonstrate
marginal
understanding of
the concept of
pointers. Is able to
use pointers in

Demonstrate little
understanding of
the concept of
pointers. Have
great difficulty in
using pointers in

memory
allocation.

effectively in
indirect addressing
and dynamic
memory allocation
in a great variety
of scenarios.

effectively in
indirect addressing
and dynamic
memory allocation
in standard
scenarios.

indirect addressing
and dynamic
memory allocation
only in simple
scenarios.

indirect addressing
and dynamic
memory allocation
even in simple
scenarios.

Understand and
demonstrate the
use of various data
structures.

Is able to choose
the appropriate
data structures
such as linked lists,
stacks and queues
to solve problems,
and implement
the solution in C++
on one's own.

Is able to use the
required data
structures such as
linked lists, stacks
and queues to
solve problems,
and implement
the solution in C++
on one's own.

Is able to use the
required data
structures such as
linked lists, stacks
and queues to
solve simple
problems, and
implement the
solution in C++
with guidance.

Demonstrate little
understanding of
data structures
such as linked lists,
stacks and queues,
and is unable to
use them to solve
problems even
with guidance.

Implement an
abstract data type
(ADT) by defining a
class in C++.

Given the
description of a
simple ADT, is able
to implement it
with a complete
C++ class
definition that
includes
appropriate class
members and class
member functions.
Is able to write
programs that
create and
manipulate ADT
objects.

Given the
description of a
simple ADT, able
to implement it
with a complete
C++ class
definition when its
class members and
class member
functions are also
hinted. Is able to
write programs
that create and
manipulate ADT
objects.

Given the
description of the
C++ class
definition of a
simple ADT,
including its class
members and class
member functions,
is able to
implement the
member functions.
Sometimes is able
to write programs
that create and
manipulate ADT
objects

Have great
difficulty in
understanding the
link between a
simple ADT and its
C++ definition. Is
unable to
complete C++
definition for
simple ADTs and
to program with
C++ classes.

Final Grade Descriptors:

[As appropriate to the course and aligned with university standards]

Grades Short Description Elaboration on subject grading description

A

Excellent Performance

This student excels in C++ programming, expertly using IDEs to
write, debug, and manage code while independently solving
problems with well-structured programs under 500 lines. They
demonstrate mastery of recursion, pointers, and dynamic
memory allocation, applying them effectively in diverse scenarios,
and can skillfully implement data structures like linked lists,
stacks, and queues. Additionally, they can design robust C++
classes for abstract data types (ADTs) and manipulate objects with
precision.

B

Good Performance

This student demonstrates solid C++ skills, competently using IDEs
to develop and debug programs while solving well-defined
problems (under 500 lines) when given clear requirements. They

 understand recursion, pointers, and dynamic memory allocation
well enough to apply them in standard scenarios, and can
implement basic data structures like linked lists, stacks, and
queues independently. With some guidance, they can also design
simple ADTs as C++ classes and manipulate objects effectively.

C

Satisfactory Performance

This student has achieved satisfactory proficiency in foundational
C++ programming, capably writing and running single-file
programs in VS Code while beginning to explore multi-file projects
with some guidance. They can break down and solve well-defined
problems (under 100 lines) when given structural support,
demonstrating growing competence with core programming
constructs. While their understanding of recursion, pointers, and
data structures is not fully developed, they can apply these
notions. With continued effort, they are well-positioned to
solidify these skills for more complex tasks.

D

Marginal Pass

This student shows minimal C++ proficiency, (e.g., handling only
basic single-file programs and requiring extensive help with multi-
file projects or debugging). They solve small problems (under 100
lines) when given step by-step guidance and pre-divided tasks.
Their grasp of advanced notion is weak, often misapplying
concepts, and they depend heavily on examples. With significant
effort and using this course as a basis, the student can strengthen
their skills.

F

Fail

This student has failed to demonstrate basic C++ programming
competency. They cannot independently write, compile, or debug
simple programs, requiring extensive step-by-step guidance for
every task. Fundamental programming concepts are not
understood, and they are unable to solve problems or implement
solutions even with significant support. Their performance shows
no evidence of meeting the course's minimum learning
objectives.

Course AI Policy

Generative artificial intelligence tools like ChatGPT or similar software are not allowed for labs and

programming assignments. This has been clearly communicated to the students. The rational behind this is

that this course teaches fundamental coding techniques in C++ and students need to learn and apply correct

programming techniques, syntax, and development; relying on generative AI tools can hamper this, at their

current level of programming understanding.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of

submission. Feedback on assignments will include detailed grading, and itemized marks deduction. We also

provide template solutions to offer students the chance to improve their skills and correct their errors.

Students who have further questions about the feedback including marks should consult the grader and

instructor within a few working days after the feedback is received.

Resubmission Policy

No resubmission of assessment tasks allowed.

Required Texts and Materials

Big C++: Late Objects, 3rd Edition

Cay S. Horstmann

eBook ISBN: 9781119402978

Academic Integrity

Students are expected to adhere to the university’s academic integrity policy. Students are expected to

uphold HKUST’s Academic Honor Code and to maintain the highest standards of academic integrity. The

University has zero tolerance of academic misconduct. Please refer to Academic Integrity | HKUST –

Academic Registry for the University’s definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

N.A.

https://registry.hkust.edu.hk/resource-library/academic-integrity
https://registry.hkust.edu.hk/resource-library/academic-integrity

