

CENG4130 Plant Design and Economics syllabus (tentative)

Instructor: Marshal LIU, keysliu@ust.hk

PG TA:

Blended learning

- More personalized learning (watch lecture video outside of class)
- More interaction (discussion and Homework in class)

Intended Learning Outcomes (ILOs)

By the end of the course, learners will be able to:

- demonstrate mastery of economic analysis in chemical process and/or product development;
- make meaningful estimates on various economic aspects such as the capital investment, product cost, depreciation and profitability of an existing or new chemical process or project;
- be aware of the importance of environment/health issues in chemical industry;
- apply process safety management program, industrial hygiene, fire and explosion, toxic release and dispersion, and pressure relief system,
- conduct Hazards Identification, Risk Analysis, and HAZOP;

Course AI Policy

AI can be used in homework, quizzes, and exams

Weekly schedule

	ILOs	Module title and Topics	Tasks/Submissions/in-class
1	<ul style="list-style-type: none"> Describe the purpose of the blended learning approach Recall the course content and learning outcomes Explain the importance of plant design and economics 	Course overview and BL Overview <ul style="list-style-type: none"> Students will be introduced to the blended learning approach Course introduction Introduce the importance of plant design. 	<ul style="list-style-type: none"> Discuss the economics for a typical chemical plant, converting coal to methanol After 1st F2F class meeting, start online materials Module 1
2	<ul style="list-style-type: none"> Estimate capital investment and equipment cost 	<u>Capital and Cost Estimation</u> <ul style="list-style-type: none"> Lecture video/notes on process economics, capital investment, equipment cost estimation, etc. 	<ul style="list-style-type: none"> In-class: Scenario-based quiz questions to check understanding of online materials In-class: Tutorials on estimating investment and equipment cost
3	<ul style="list-style-type: none"> List the components in TPC Calculate the depreciation Incorporate time value for financial analysis 	<u>Total Product Cost (Time Value and Depreciation)</u> <ul style="list-style-type: none"> Lecture notes and video on TPC components, time value of money, and depreciation 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate product cost, incorporate time value for financial analysis and determine depreciation
4	<ul style="list-style-type: none"> Plot cash flow diagram Determine criteria for profitability analysis 	<u>Cash position diagram and Profitability criteria</u> <ul style="list-style-type: none"> Lecture notes and video on cash flow, cash position, minimum attractive rate 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In class: Activities to plot cash flow diagram, and determine m_{ar}
5	<ul style="list-style-type: none"> Use various methods for profitability analysis Incorporate time value of money into profitability analysis 	<u>Profitability Analysis</u> <ul style="list-style-type: none"> Lecture video/notes on profitability analysis with/without time value 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Tutorials on profitability analysis calculation
6	<ul style="list-style-type: none"> Compare alternative investment. Evaluate replacement for equipment 	<u>Alternative Investments & Replacement</u> <ul style="list-style-type: none"> Lecture video/notes on Alternative investment and replacement Debrief Financial Project 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Tutorial and debate to weigh out pros and cons for replacement of equipment and alternative investment

7	<ul style="list-style-type: none"> Describe the major methods on process safety management Identify the possible reason for accidents Evaluate the chemical exposure 	Process Safety Management <ul style="list-style-type: none"> Videos investigating past accidents from Chemical Safety Board Video on occupational safety 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze case studies on accident prevention and process safety management to real life cases, and tutorial on chemical exposure calculation
8	<ul style="list-style-type: none"> Implement fire and explosion prevention measures in process design 	Fire and Explosion Prevention <ul style="list-style-type: none"> Lecture video/notes on fire and explosion 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to design a floated roof tank for flammable liquid with fire and explosion prevention measures in mind
9	<ul style="list-style-type: none"> Calculate the release and dispersion of toxics 	Toxic Release and Dispersion <ul style="list-style-type: none"> Lecture video/notes on the toxic release and dispersion 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate toxic release and dispersion of Fukushima or other real life situations and implications on public.
10	<ul style="list-style-type: none"> Select the scenario and type of pressure relief 	Pressure Relief <ul style="list-style-type: none"> Lecture video/notes on pressure relief 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze cases on selection of pressure relief device and scenarios to real life case
11	<ul style="list-style-type: none"> Conduct HAZOP 	HAZOP (Hazard and Operability Study) <ul style="list-style-type: none"> Lecture notes and other learning resources on HAZOP Debrief HAZOP Project 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze and apply HAZOP to real life case
12	<ul style="list-style-type: none"> Calculate the reliability for various safety components Construct Fault Tree and Event Tree 	Reliability, Fault tree and Event Tree <ul style="list-style-type: none"> Lecture video/notes on reliability, Fault tree and Event tree 	<ul style="list-style-type: none"> Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to apply Safety and reliability to real life case, construct a Fault Tree, Event Tree and risk calculation
13/14	<ul style="list-style-type: none"> Q&A for HAZOP project Course wrap-up 	Reviewing HAZOP Videos and prepare Q&A	<ul style="list-style-type: none"> In-class: Q&A on HAZOP project Course summary

Assessments

	Components	Weighting	Details
1	Out-of-class Quizzes (self-assessment)	14%	On canvas
2	Class discussion and participation Online forum participation, 4 questions with 4 points	8%	Either post a valid question in online forum or give an answer to questions posted by others. At least 2 questions for Economics and 2 for Safety part.
3	Homework *4	10%	Consolidate/practice calculations (help prep for final)
3	Group Project 1: Financial Report (Economics)	10%	Written Report
4	Group Project 2: HAZOP (Safety)	10%	Video presentation + Q&A
5	Peer Evaluation	8%	Contribution to group discussion, homework and project
6	Final Exam	40%	Open book, computer and internet

Textbook

- Peter, M.S. Timmerhaus, K.D. & West, R.E. Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill 2003
- Crowl, D.A. and Louvar, J.F. Chemical Process Safety: Fundamentals with Applications. Prentice Hall International Series, 3rd, 2011.
<http://my.safaribooksonline.com/book/chemistry/9780132762489>

References

- Towler and Sinnott. Chemical Engineering Design. Elsevier, 2008. E-book
- Turton, Bailie, Whiting & Shaeivitz. Analysis, Synthesis, and Design of Chemical Processes, 3rd edition, Prentice Hall PTR 2009