MECH 2210 FLUID MECHANICS

(Spring 2024/2025)

Course Description:

Fundamental concepts; fluid statics; fluid kinematics, integral and differential equations of fluid flows; conservation of mass, momentum and energy; dimensional analysis; pipe flows, external flows, and nanofluidics.

Prerequisites: MATH 2011/2023, MECH 2310

References: Fundamentals of Fluid Mechanics, 5th or 6th edition

B.R. Munson, D.F. Young and T.H. Okiishi (Wiley and Sons, 2006/10)

Mechanics of Fluids (Cengage Learning, 2015)
M.C. Potter, D.C. Wiggert, and B.H. Ramadan
Nanofluidics: An Introduction, 1st edition
Zhigang Li (CRC-Taylor & Francis, 2018)

Instructor: Dr. Zhigang Li (Tel: 7186 Email: mezli@ust.hk Room: 2561)

Lecture hours: 2 sessions/week, 80 minutes/session (3 credits)

Detailed Course Outline (times are subject to changes)

Chapter 1. Introduction

week 1

- 1.2 Dimensions and units
 - 1.4 Measures of fluid mass and weight
 - 1.5 Ideal gas law
 - 1.6 Viscosity
 - 1.7 Compressibility
 - 1.8 Vapor pressure
 - 1.9 Surface tension

Chapter 2. Fluid Statics

weeks 2-3

- 2.1 Pressure at a point
- 2.2 Basic equation for pressure field
- 2.3 Pressure variation in a fluid at rest
- 2.4 Standard atmosphere
- 2.5 Measure of pressure
- 2.6 Manometry
- 2.8 Hydrostatic force on a plane surface
- 2.9 Pressure prism
- 2.10 Hydrostatic force on a curved surface
- 2.11 Buoyancy and stability
- 2.12 Pressure variation in a fluid with rigid-body motion

Chapter 3. Fluids in Motions

weeks 3-4

- 3.1 Newton's second law
- 3.2 F=ma along a streamline

3.3	F=ma normal to a	a streamline	
3.4	Physical interpret	tation	
3.5	Static, stagnation	, dynamic, and total pressure	
3.6	Application of B.	E.	
Chapter 4.	Kinematics of Flu	uid Motion	weeks 4-5
4.1	Velocity field		
4.2	Acceleration field	d	
4.3	Control volume a	and system	
	The Reynolds tra	•	
Chapter 5.	Flow analysis usi	ng C.V.	weeks 6-7
5.1	Continuity equati	on	
5.2	Linear momentur	n equation (5.2.3, 5.2.4 not required)	
	Energy equation		
	Differential meth	ods	week 7-9
	Fluid element kir		
6.2	Mass conservation	n	
6.3	Conservation of l	inear momentum	
6.4	Inviscid flow (6.4	4.2 not required)	
	Potential flows	1 /	
6.8	Viscous flow		
6.9	Simple solutions	for viscous, incompressible fluids	
	1	, 1	
Mid-term T	BD		week 9/10
Chapter 8.			weeks 10-11
		ristics of pipe flow	
	Fully developed l		
	•	turbulent flow (discussed but not requ	ired)
		lysis (8.4.3 not required)	
	External Flows		weeks 11-12
		flow characteristics	
9.2	Boundary layer (briefly discussed but not required)	
	Drag		
9.4	Lift		
	Introduction to	Nanofluidics	weeks 13
10.1	Introduction		
10.2	2 Methodologies		
		nd their implications	
10.4	Nanofluidic dio	des	
Grading Po	olicy (TBD)		
Hor	nework	10%	
	l-term exam	40%	
17110	i-willi caalii	TU/U	

Fina exam

50%