MECH 4830 Introduction to Aerospace Spring 2024 Computational Fluid Dynamics (CFD)

Instructor:	Larry Li, Associate Professor of MAE (<u>larryli@ust.hk</u>)
Course Objectives:	The main objective is to provide you with the knowledge and skills necessary (i) to perform CFD using modern software and (ii) to analyze CFD data, with a view to extracting meaningful physics and insight for flows relevant to aerospace engineering.
	 By the end of this course, you should be able to: (a) Understand the basic theory of CFD. (b) Construct CFD models, identify the critical control parameters, and adjust those parameters to suit different flow conditions. (c) Apply state-of-the-art CFD software to solve realistic flow problems, particularly those in aerospace engineering. (d) Post-process and analyze CFD data to gain physical insight.
Assessment:	50% Lab 1: Steady flow around a 2D airfoil50% Lab 2: Unsteady flow around a 2D cylinderOptional Lab 3: Steady flow around a complex 3D vehicle

Course Outline

- 1. Introduction + Review of Fluid Dynamics
 - Conservation laws
 - Governing equations: derivation, analysis and physical interpretation
 - OpenFOAM
- 2. <u>Numerical methods in CFD</u>
 - Finite difference method
 - Finite volume method
 - Spatial and temporal discretization
 - Numerical accuracy
 - Numerical stability
- 3. Meshing
 - Structured vs. unstructured grid
 - Grid refinement and convergence
- 4. <u>Turbulence modeling</u>
 - Reynolds-averaged Navier–Stokes (RANS) equations: closure problem
 - Which turbulence model to use?
- 5. Advanced topics (time permitting)
 - Immersed boundary method
 - High-order numerical schemes
 - CFD for supersonic flows