MECH3660 Gas Turbines and Jet Propulsion

Course Code: MECH3660		Course Title: Gas Turbines and Jet Propulsion
Required Course Or Elective Co Elective for BEng(MECH)/Requi Major		Terms Offered (Credits): Spring (3 credits)
Faculty In Charge: Xin ZHANG		Pre/Co-Requisites: Prerequisite(s): (MATH2111 OR MATH2350 OR MATH2351) AND MECH3640
Course Structure: 2 classes (1.5 hours) per week; Tutorial: 1 hour per week		
 Textbook/Required Material: 1. "Jet Propulsion" by Nicholas Cumpsty and Andrew Heyes, 3rd ed., Cambridge University Press, 2015 2. Class notes 		
Bulletin Course Description: Jet propulsion, gas turbine, engine types, performance, turbojet, turboprop, E-propulsion engines, designs of compressor, combustor, and turbines, and environmental considerations. For science and engineering students in their third year of study or above.		
Course Topics: 1. Introduction to jet propulsion and engine classification 2. Aerodynamics 3. Performance metrics 4. A case study 5. Numbering and certification 6. Intake 7. Nozzle 8. Ramjet 9. Turbojet 10. Turbofan 11. Bypass ratio 12. Dynamic scaling and non-dimensional analysis 13. Compressor 14. Combustion 15. Turbine 16. Turboprop 17. Rocket 18. E-propulsion 19. Environmental Consideration: aircraft/ engine noise		
Course Objectives:	1. Students w	vill establish understanding of propulsion systems in
(correlated program objectives)	to work in manufactu 2. Students s aeronautic relevant in	at are essential to graduate engineers who are intended aircraft system/component iring/maintenance environments. [P-01, P-02] hould be able to describe and appreciate the key cal engineering features of the context in which the dustry operates. [P-03, P-04]
Course Outcomes:	A. Students w	vill gain skills in problem solving for aircraft propulsion

(correlated course objectives and program outcomes)	 systems, in particular gas turbine engines. [POC1, POC3, POC5, POC7] B. Students will gain the ability to carry out a cyclic analysis of a gas turbine engine, including turbofan engines. [POC1, POC3, POC6] C. Students will be able to determine the applicability of a given propeller system for a given aircraft. [POC1] D. Students will understand the working of various components of gas turbines. [POC1, POC4, POC5] E. Students should gain an appreciation of design constraints and environmental impact of aeroengine. [POC9, POC10, POC11, POC12] 	
Assessment Tools: (correlated course outcomes)	 (1) Mid-term – 30% (2) Attendance – 10 % (3) Final Exam – 60% 	

BEng in Aerospace Engineering (4-year program)

Program Objectives:

- P-O1. Be able to communicate and perform as an effective engineering professional in both individual and teambased project environments,
- P-O2. Have an international outlook with clear perspectives on the Pearl river Delta and Greater China,
- P-O3. Be able to research, design, develop, test, evaluate and implement engineering solutions to problems that are of complexity encountered in professional practice and leadership,
- P-O4. Clearly Consider the ethical implications and societal impacts of engineering solutions,
- P-O5. Continuously improve through lifelong learning.

Program Outcomes:

- POC1. Ability to identify and formulate problems in multidisciplinary environment with an understanding of engineering issues and constraints.
- POC2. Ability to design and conduct experiments as well as analyze and interpret data.
- POC3. Ability to apply knowledge of mathematics, science, and engineering for problem solving in aerospace engineering and related sectors or for further education in research career.
- POC4. Ability to develop specification and to design system, component, or process to meet needs.
- POC5. Ability to understand the design, operation, and maintenance of aircraft components and systems.
- POC6. Ability to use modern engineering tools, techniques, and skills in engineering practice.
- POC7. Ability to communicate effectively.
- POC8. Ability to function in multi-disciplinary teams and provide leadership.
- POC9. Broadly educated with an understanding of the impact of engineering solutions on issues such as economics, business, politics, environment, health and safety, sustainability, and societal context
- POC10. Clear understanding of professional and ethical responsibilities
- POC11. Recognition of the need for life-long learning and continuing education
- POC12. International outlook with knowledge of contemporary issues