MECH3630 Electrical Technology

Course Code: MECH3630	Course Title: Electrical Technology
Required Course Or Elective Course: required	Terms Offered (Credits): Spring (3 credits)
Faculty In Charge: Yongsheng Gao	Pre/Co-Requisites:
	ΝΑ
Course Structure: Lecture: 2 days per week, 3 hours; Lab: 1 day per week, 1 hour; Tutorial: 1 day per week, 1 hour	
Textbook/Required Material:	
P. C. Sen, Principles of Electric Machines and Power Electronics, third edition, Wiley, 2013.	
Bulletin Course Description:	
Theoretical and practical treatment of key elements in electrical technology with industrial applications. Main topics include magnetic circuits, transformers, electrical machines, and applications for industrial automation.	
Course Topics:	
1. Magnetic Circuits (1.5 weeks)	
2. Hysteresis	
3. Sinusoidal excitation 4. Permanent magnet	
4. Termanent magnet	
5. Transformers (2 weeks)	
6. Construction and working principle	
7. Equivalent circuit analysis	
8. Autotransformers and three-phase transformers	
9. Electromechanical Energy Conversion (0.5 weeks)	
10. Energy conversion process	
11. Field energy	
12. Mechanical force in the electromagnetic system	
13. Rotating machines	
14. DC Machines (3 weeks)	
15. Motor and generator principles	
16. Speed-torque characteristics of series, shunt, and compound wound motors	
17. Induction (asynchronous) Machines (3.5 weeks)	
18. Construction and principle of action of squirrel cage motors	
19. Speed control and starting method	
20. Equivalent circuit analysis	
21. Speed-torque characteristics	
22. Synchronous Machines (0.5 weeks)	
23. Construction and principle of action	
24. Equivalent circuit analysis	
25. Speed-torque characteristics	

26. Single-Phase Motors (0.5 weeks)		
27. Double revolving field theory		
28. Equivalent circuit analysis 29. Speed torque characteristics		
29. speed-torque characteristics		
30. Special Machines (0.5wks)		
31. Servomotors		
32. Synchros		
33. Stepper motors		
34. Transients and Dynamics (U.SWKS)		
35. DC machines		
30. Synchronous machines		
37. Induction machines 38. Transformer		
39. Power Semiconductor Converters (0.5 wks)		
40. Power semiconductor devices		
41. Controlled rectifiers		
42. AC voltage controllers		
43. Choppers		
44. Inverters and cycloconver	ters	
Course Objectives:	1. To equip students with fundamental theories and technologies in electromechanical energy conversion (P-O1, P-O2, P-O3)	
objectives)	2. To introduce students structures, working principle, and load	
	characteristics of key electromechanical devices such as	
	transformer, DC machine, and induction machine (P-O1, P-O2, P-	
	O3).	
	3. To provide students extensive training in development and use of	
	equivalent circuit for magnetic circuit and device analysis for	
	engineering design (P-O1, P-O2, P-O3).	
	4. To introduce students practical issues that affect safety and energy	
	efficiency (P-O4)	
Course Outcome ou	A Ability to use basic knowledge in physics and mathematical tool to	
(correlated course objectives	develop new analysis tools, concepts, and models (1.3) (POC1.	
and program outcomes)	POC3).	
	B. Ability to use electromechanical devices, such as transformers, DC	
	machines, induction machines, and power devices for mechanical	
	system design and development (4) (POC4).	
	C. Ability to conduct design analysis for products that involve	
	electromechanical energy conversion (1-3) (POC1, POC3, POC4).	
	D. Awareness of safety issues in use of electromechanical devices and	
	power devices (4) (POC9, POC10)	
• • •	Hemowerk 15% (A D)	
Assessment Tools: Homework - 15% (A-D)		
(correlated course outcomes) Mid Term and Final Exams – 70% (A-D)		
(Mid Term and Final Exams – 70% (A-D)	

BEng in Mechanical Engineering (4-year program) Program Objectives:

- P-O1. Be able to communicate and perform as an effective engineering professional in both individual and teambased project environments,
- P-O2. Have an international outlook with clear perspectives on the Pearl river Delta and Greater China,
- P-O3. Be able to research, design, develop, test, evaluate and implement engineering solutions to problems that are of complexity encountered in professional practice and leadership,
- P-O4. Clearly Consider the ethical implications and societal impacts of engineering solutions,
- P-O5. Continuously improve through lifelong learning.

Program Outcomes:

- POC1. ability to identify and formulate problems in multidisciplinary environment with an understanding of engineering issues and constraints;
- POC2. ability to design and conduct experiments as well as analyze and interpret data;
- POC3. ability to apply knowledge of mathematics, science, and engineering for problem solving in mechanical engineering and related sectors or for further education in a research career;
- POC4. ability to develop specification and to design system, component, or process to meet needs;
- POC5. ability to understand the manufacturability, maintainability, and recyclability of engineering system and components;
- POC6. ability to use modern engineering tools, techniques, and skills in engineering practice;
- POC7. ability to communicate effectively;
- POC8. ability to function in multi-disciplinary teams and provide leadership;
- POC9. broadly educated with an understanding of the impact of engineering solutions on issues such as economics, business, politics, environment, health and safety, sustainability, and societal context;
- POC10. clear understanding of professional and ethical responsibilities;
- POC11. recognition of the need for life-long learning and continuing education;
- POC12. international outlook with knowledge of contemporary issues.