MECH 2210 FLUID MECHANICS

(Spring 2023/2024)

Course Description:

Fundamental concepts; fluid statics; fluid kinematics, integral and differential equations of fluid flows; conservation of mass, momentum and energy; dimensional analysis; pipe flows, external flows, and nanofluidics.

Prerequisites: MATH 2011/2023, MECH 2310

References: Fundamentals of Fluid Mechanics, 5th or 6th edition

B.R. Munson, D.F. Young and T.H. Okiishi (Wiley and Sons, 2006/10)

Mechanics of Fluids (Cengage Learning, 2015) M.C. Potter, D.C. Wiggert, and B.H. Ramadan

Nanofluidics: An Introduction, 1st edition Zhigang Li (CRC-Taylor & Francis, 2018)

Instructor: Dr. Lin FU (Tel: 3469 2969 Email: linfu@ust.hk Room: 2606A)

Lecture hours: 2 sessions/week, 80 minutes/session (3 credits)

Office hours: 3:00-5:00pm Tuesday or by appointment

Teaching Assistants: Mr. Anjia Ying <u>aying@connect.ust.hk</u>

Mr. Justin Edmund Sun kijesun@connect.ust.hk

Detailed Course Outline (times are subject to changes)

Chapter 1. Introduction

week 1

- 1.2 Dimensions and units
- 1.4 Measures of fluid mass and weight
- 1.5 Ideal gas law
- 1.6 Viscosity
- 1.7 Compressibility
- 1.8 Vapor pressure
- 1.9 Surface tension

Chapter 2. Fluid Statics

weeks 2-3

- 2.1 Pressure at a point
- 2.2 Basic equation for pressure field
- 2.3 Pressure variation in a fluid at rest
- 2.4 Standard atmosphere
- 2.5 Measure of pressure
- 2.6 Manometry
- 2.8 Hydrostatic force on a plane surface
- 2.9 Pressure prism
- 2.10 Hydrostatic force on a curved surface
- 2.11 Buoyancy and stability
- 2.12 Pressure variation in a fluid with rigid-body motion

Chapter 3. Fluids in Motions

weeks 3-4

- 3.1 Newton's second law
- 3.2 F=ma along a streamline

	Homework	10%	
Gradin	g Policy (TBD)		
Chapter	10. Advances in w	wall-bounded turbulence modelling	weeks 13
C1	9.4 Lift		
	9.3 Drag	- · · · · · · · · · · · · · · · · · · ·	
	9.2 Boundary layer	r (briefly discussed but not required)	
•		al flow characteristics	
Chapter	9. External Flows		weeks 11-12
	•	nalysis (8.4.3 not required)	,
	8.3 Fully developed turbulent flow (discussed but not required)		red)
	8.2 Fully develope	1 1	
Chapter	-	eteristics of pipe flow	Weeks 10 11
Chapter	8. Pipe Flows		weeks 10-11
Mid-ter	m TBD		week 9/10
	6.9 Simple solution	ns for viscous, incompressible fluids	
	6.8 Viscous flow	ns for viscous incompressible fluids	
	6.5 Potential flows	S	
	6.4 Inviscid flow (
		of linear momentum	
	6.2 Mass conserva		
	6.1 Fluid element l		
Chapter	6. Differential me		week 7-9
	5.3 Energy equation		
		tum equation (5.2.3, 5.2.4 not required)	
	5.1 Continuity equ	ation	
Chapter	5. Flow analysis	using C.V.	weeks 6-7
	4.4 The Reynolds	transport theorem	
	4.3 Control volume	e and system	
	4.2 Acceleration fi	ield	
1	4.1 Velocity field		
Chapter	4. Kinematics of		weeks 4-5
	3.6 Application of	· · · · · · · · · · · · · · · · · · ·	
	•	on, dynamic, and total pressure	
	3.4 Physical interp		
	3.3 F=ma normal t	to a streamline	

Mid-term exam

Final exam

40%

50%