MECH 2210 FLUID MECHANICS

(Spring 2023/2024)

Course Description:

Fundamental concepts; fluid statics; fluid kinematics, integral and differential equations of fluid flows; conservation of mass, momentum and energy; dimensional analysis; pipe flows, external flows, and nanofluidics.

Prerequisites: MATH 2011/2023, MECH 2310

References: Fundamentals of Fluid Mechanics, 5th or 6th edition

B.R. Munson, D.F. Young and T.H. Okiishi (Wiley and Sons, 2006/10)

Mechanics of Fluids (Cengage Learning, 2015) M.C. Potter, D.C. Wiggert, and B.H. Ramadan

Nanofluidics: An Introduction, 1st edition Zhigang Li (CRC-Taylor & Francis, 2018)

Instructor: Dr. Zhigang Li (Tel: 7186 Email: mezli@ust.hk Room: 2561)

Lecture hours: 2 sessions/week, 80 minutes/session (3 credits)

Office hours: 4:00-5:00pm Tuesday and Thursday or by appointment

Teaching Assistants: Mr. Yixiang Wang ywangiq@connect.ust.hk room 4222

Mr. Shaobin Zhuo szhuo@connect.ust.hk room 4222

Detailed Course Outline (times are subject to changes)

Chapter 1. Introduction

week 1

- 1.2 Dimensions and units
- 1.4 Measures of fluid mass and weight
- 1.5 Ideal gas law
- 1.6 Viscosity
- 1.7 Compressibility
- 1.8 Vapor pressure
- 1.9 Surface tension

Chapter 2. Fluid Statics

weeks 2-3

- 2.1 Pressure at a point
- 2.2 Basic equation for pressure field
- 2.3 Pressure variation in a fluid at rest
- 2.4 Standard atmosphere
- 2.5 Measure of pressure
- 2.6 Manometry
- 2.8 Hydrostatic force on a plane surface
- 2.9 Pressure prism
- 2.10 Hydrostatic force on a curved surface
- 2.11 Buoyancy and stability
- 2.12 Pressure variation in a fluid with rigid-body motion

Chapter 3. Fluids in Motions

weeks 3-4

- 3.1 Newton's second law
- 3.2 F=ma along a streamline

	F=ma normal to a		
	Physical interpret	tation, dynamic, and total pressure	
	Application of B.	· •	
	Kinematics of Flo		weeks 4-5
	Velocity field	uld Motion	WCCKS 4-3
	Acceleration field	4	
	Control volume a		
	The Reynolds tra	•	
	Flow analysis usi	•	weeks 6-7
•	Continuity equati	•	WCCKS 0-7
		n equation (5.2.3, 5.2.4 not required)	
	Energy equation	ir equation (3.2.3, 3.2.4 not required)	
	Differential meth	ands	week 7-9
•	Fluid element kir		WCCK 1-3
	Mass conservation		
	Conservation of 1		
	Inviscid flow (6.4		
	Potential flows	1.2 not required)	
	Viscous flow		
		for viscous, incompressible fluids	
0.7	Simple solutions	for viscous, incompressione fluids	
Mid-term T	TBD		week 9/10
Chapter 8.	Pipe Flows		weeks 10-11
-	•	ristics of pipe flow	
	Fully developed l		
	•	turbulent flow (discussed but not required)	
	•	lysis (8.4.3 not required)	
	External Flows		weeks 11-12
		flow characteristics	
9.2	Boundary layer (briefly discussed but not required)	
	Drag	1 /	
	Lift		
Chapter 10.	Introduction to	Nanofluidics	weeks 13
	1 Introduction		
10.2	2 Methodologies		
10.	10.3 Flow regimes and their implications		
	4 Nanofluidic dio		
Grading Po	olicy (TBD)		
Ho	mework	10%	
Mic	d-term exam	40%	

Fina exam

50%