Department of Industrial Engineering and Decision Analytics

IEDA 2100S: COMPUTING IN INDUSTRIAL APPLICATIONS (Spring Semester 2024)

Dr. CHIN Jing Wei (Nick) Rm5584 Email: nickchin@ust.hk

Aims:

To equip IEDA students with the knowledge of microprocessor controls and automation so that they are confident to work in high value-added industries such as RFID systems, medical devices, IoT devices, industrial electro-pneumatic systems and high-end consumer products.

Learning Philosophy:

Successful IEDA graduates are creative in using advanced technology. Creativity is about making new and original associations among different technologies. This course will provide hands-on experience in automation technology.

Course Learning outcomes: after this course, students should be able to:

Knowledge/Content Related:

- 1. Acquire and practice the ability to design, construct, analyse, and critique a simple control system with sensor and actuators.
- 2. Acquire and practice the ability to identify, compare the basic architecture of different computers.

Academic Skills/Competencies:

- 3. Acquire and practice the ability to program a Programmable Logic Controller to perform some automated tasks.
- 4. Practice the ability to solve automation technology problems through self-learning.

Lectures:	We 02:30PM - 04:20PM; Rm 2302, Lift 17-18
Labs:	(LA1) We 09:00AM - 11:50AM (LA2) Tu 12:00PM - 02:50PM; rm.4223
Office hours:	We 01:30PM - 02:20PM or appointments via emails (<u>nickchin@ust.hk</u>)

Reference Text:

This is a lab-based course and full lecture notes and laboratory instructions have been written and will be put on the CANVAS.

Supplementary Reading:

Jacob, J.M. (1988) Industrial control electronics: application and design. Prentice Hall. ISBN 0-13-459306-5. (TK7881.2 J33 1988).

Phipps, C.A. (1995) Fundamentals of Electrical Control. The Fairmont Press Inc. ISBN 0-13-504846-X. (TK 7881.2 P55 1995).

Smith, E. and Vivian, B.E. (1995) An introductory guide to valve selection. Mechanical Engineering Publications Limited, London. ISBN 0-85298-914-8. (TJ 223 V3 S65 1995).

_

Course Grading:

Mid-Term Exam	25%	(Open-book Exam)
Final Exam	35%	(Open-book Exam)
Lab. Work	30%	(NO Copying *)
Assignment 1	5%	(NO Copying *)
Class & Lab Participation	5%	
	100%	

* Heavy Penalty for copying or free riding!

Course Syllabus:

	LECTUREs	LAB SESSIONS
Week 1 [Add / Drop] L1: Wed, Jan 31 LA1: Wed, Jan 31 LA2: Sat, Jan 00	 Topic 1: Introduction to Automation Automation in HK Components & structures of automated systems Course Overview & Intro to the lab 	NO Lab.
Week 2 [Add / Drop] L1: Wed, Feb 07 LA1: Wed, Feb 07 LA2: Tue, Feb 06	Topic 2: Pneumatic Control • Usage in HK • Basic Components • Symbols & circuit diagram	NO Lab.
Week 3 [Add / Drop] L1: Wed, Feb 14 LA1: Wed, Feb 14 LA2: Tue, Feb 13	Continue Topic 2	NO Lab.
Week 4 L1: Wed, Feb 21 LA1: Wed, Feb 21 LA2: Tue, Feb 20	Topic 3: Sensors, transducers & transceivers < Assignment 1 > • Definitions & usage in HK • Types & characteristics • Working principles	Lab 1: Design & build a Pneumatic control door.
Week 5 L1: Wed, Feb 28 LA1: Wed, Feb 28 LA2: Tue, Feb 27	Continue Topic 3	Lab 2: Design & build automatic door with safety sensors
Week 6 L1: Wed, Mar 06 LA1: Wed, Mar 06 LA2: Tue, Mar 05	 Topic 4: Ladder Logic & PLC Basic PLC Hardware Ladder logic diagram for circuit design Ladder logic as a programming tool Case studies & exercises 	Lab 3: Mission Impossible! A FUN lab to illustrate the importance of circuit diagrams - Part I
Week 7 L1: Wed, Mar 13 LA1: Wed, Mar 13 LA2: Tue, Mar 12	Continue Topic 4 < Assignment 1 deadline >	Lab 4: Mission Impossible! A FUN lab to illustrate the importance of circuit diagrams - Part II

Week 8 L1: Wed, Mar 20 LA1: Wed, Mar 20 LA2: Tue, Mar 19	 Topic 5: Electro-magnetic Actuation Usage in HK Types of motors & relays Stepping motors & Servo motors 	Lab 5: First exercise with PLC
Week 9 L1: Wed, Mar 27 LA1: Wed, Mar 27 LA2: Tue, Mar 26	*Midterm Exam (Tentative Date)*	Lab 6: Design & build an automatic material selection system - Part I
Week 10 L1: Wed, Apr 03 LA1: Wed, Apr 03 LA2: Tue, Apr 02	Mid-term Break	NO Lab.
Week 11 L1: Wed, Apr 10 LA1: Wed, Apr 10 LA2: Tue, Apr 09	 Topic 6: Analogue, Digital & Microprocessor Controls Basics of digital signals Architecture of a PC Standard I/O interfaces of a PC 	Lab 7: Design & build an automatic material selection system - Part II
Week 12 L1: Wed, Apr 17 LA1: Wed, Apr 17 LA2: Tue, Apr 16	Continue on Topic 6	Lab 8: Design & build a simple industrial IoT System
Week 13 L1: Wed, Apr 24 LA1: Wed, Apr 24 LA2: Tue, Apr 23	Topic 7: Internet of things (IoT) & Automation in HealthCare	Lab 9: Automation in HealthCare: noninvasive heart rate monitor - Part I
Week 14 L1: Wed, May 01 LA1: Wed, May 01 LA2: Tue, Apr 30	Public Holiday	NO Lab.
Week 15 L1: Wed, May 08 LA1: Wed, May 08 LA2: Tue, May 07	Continue on Topic 7	Lab 10: Automation in HealthCare: noninvasive heart rate monitor - Part II

NB: Lecture notes and lab instructions can be downloaded from the CANVAS.