Course Code	Course Title
COMP 4621	Computer Communication Networks

Course Description

Principles of computer network architectures and communication protocols; the OSI and the Internet reference models; switching and multiplexing techniques; Network applications, data link, network, transport layers with their instantiation in the Internet; local area networks and medium access control protocols; network applications programming and networks protocol monitoring.
Prerequisite(s): COMP 2611 or (ELEC2300 or ELEC 2350) and COMP2011 (or COMP2012H); Exclusion(s): COMP 5621, ELEC 3120, ISOM 3180.
Background in Probability and statistics is derieable.

List of Topics

* Introduction
- Internet architecture, network edge and core, performance
- Protocols
- Circuit Switching
- Packet Switching
- Delay in the Internet
- Layered architecture
* Application Layer
- Application layer protocols
- Client-Server vs Peer to Peer
- Examples of Client-server Application layer protocols: HTTP, DNS
- Peer-to-Peer or P2P Application Example
- Socket programming.
* Transport Layer
- Transport layer services
- Multiplexing and Demultiplexing
- UDP
- Reliable data transfer (RDT) principles: Stop-and-Wait
- Window based pipelined RDT
* Go-Back-N (GBN) Protocol
* Selective Repeat (SR) Protocol
- TCP Basics, Round-Trip Time Estimation and Timeout
- TCP Reliable data Transfer
- Fast Retransmit, TCP Flow Control \& TCP Connection Management
- The basic principles of congestion control
- TCP congestion control
* Network Layer: The Data Plane
- Forwarding and routing
- Fragmentation and Reassembly
- IP addressing
* Network Layer: The Control Plane
- Control Plan of Network layer Protocols
- Distance Vector Routing
- Link State Routing and OSPF
- Border Gateway Protocol (BGP)
* Link Layer
- Link Layer Services
- MAC layer addressing
- Multiple access protocols
- Random Access
- Switch vs. Router
- Ethernet and link-layer switches

Textbook

Computer Networking: A Top-Down Approach. James Kurose and Keith Ross, Pearson ($8^{\text {th }}$ Ed.)

Reference books (for socket programming)

Unix Network Programming: The Sockets Networking API. Volume $13{ }^{\text {rd }}$ edition, W. Richard Stevens, Bill Fenner, Andrew M. Rudoff. Addison Wesley.

Grading Scheme

Midterm Exam or equivalent work	25%
Final Exam	40%
Homework (3)	20%
Project	15%
Total	100%

Course Intended Learning Outcomes

- Define the basic principles of computer networks, architecture and protocols.
- Identify the principles of networked applications, including C/S based applications (such as HTTP, FTP, SMTP and DNS) and P2P based applications (such as BT)
- Discuss the major transport layer protocols, such as TCP and UDP.
- Illustrate the principles of routing algorithms and their applications on the Internet.
- Identify basic link layer protocols and the basic medium access mechanism.

Assessment Rubric

N/A

