

COMP2011
Page 1 of 4

Spring 2023-24

Course Code Course Title
COMP 2011 Programming with C++

Course Description

This course covers programming and data structures using C++. In addition to basic
programming concepts such as variables and control statements, students will learn about
arrays, pointers, dynamic data allocation, linked lists, stacks, queues, binary trees, recursion,
and the basics of object oriented programming. Prerequisite(s): COMP 1021 OR
COMP 1022P OR COMP 1022Q (prior to 2020-21) OR ISOM 3230. Exclusion(s): COMP
2012H

List of Topics

1. Introduction to computer programming
2. C++ basics: basic syntax, data types, operators
3. Control flow
4. Functions
5. Array and structure
6. Recursion
7. Scope
8. Struct
9. Pointers
10. Dynamic Data
11. Class
12. Stack and Queue
13. File input / output

Textbooks

Big C++: Late Objects, 3rd Edition
Cay S. Horstmann eBook ISBN:
9781119402978

Reference books
N/A

COMP2011
Page 2 of 4

Spring 2023-24

Grading Scheme

Lab exercises 10%

Programming assignments 24% (8%, 8% , 8%)

Quiz on C++ Basics 5%

Midterm 25%

Final exam 36%

Total 100%

Course Intended Learning Outcomes

1. Use common software tools to develop and debug a program written in C++.
2. Write and analyse short programs that solve simple problems in C++.
3. Demonstrate that recursive and non-recursive functions are abstractions of

subproblems in a task.
4. Understand and demonstrate the use of pointers in indirect addressing and dynamic

memory allocation.
5. Understand and demonstrate the use of various data structures.
6. Implement an abstract data type by defining a class in C++.

Assessment Rubrics

Course
Learning
Outcome

Exemplary Competent Needs Work Unsatisfactory

Use common
software tools
to develop and
debug a
program
written in
C++.

Use an IDE such as
VS Code
proficiently to
write, compile,
run, and debug a
C++ program
consisting of one
or many source
files.

Use an IDE such as
VS Code effectively to
write, compile, run,
and debug a C++
program consisting of
one or many source
files.

Use an IDE such
as VS Code to
write, compile,
and run a C++
program consisting
of one source file.
Have difficulty in
dealing with
programs
consisting of more
than one source
file as well as
debugging.

Have difficulty in
using an IDE such
as VS Code to write,
compile, run, and
debug a C++
program consisting
of one source file
without guidance.

COMP2011
Page 3 of 4

Spring 2023-24

Write and
analyze short
programs that
solve simple
problems in
C++.

Construct a
solution to a
written problem
by writing a
complete C++
program of no
more than 500
lines of codes on
one's own.

Construct a solution to
a written problem by
writing a complete
C++ program of no
more than 500 lines of
codes on one's own if
the requirements are
clearly explained and
the required
programming
constructs are told.

Require assistance
to break down a
written problem
into sub-problems
of sufficiently
small sizes before
being able to
construct a solution
for each sub-
problem with no
more than 100
lines of codes. The
required
programming
constructs also
need to be told.

Is unable to
construct a solution
to a written problem
by writing a
complete C++
program even under
guidance. Skeleton
code need to be
given which breaks
down the solution
into a set of small
functions with clear
interface so that the
student may be able
to implement them.

Demonstrate
that recursive
and
nonrecursive
functions are
abstractions of
subproblems
in a task.

Demonstrate
thorough
understanding of
how recursion
works. Be able to
develop a
recursive solution
to a written
problem on one's
own, and
sometimes
contrast it with
the corresponding
non-recursive
solution.

Demonstrate sufficient
understanding of how
recursion works. Be
able to develop a
recursive solution to a
written problem if
given the recursive
algorithm, and
sometimes contrast it
with the
corresponding
nonrecursive solution.

Demonstrate
insufficient
understanding of
how recursion
works. Be able to
develop recursive
solutions only to
some simple
problems, and only
if the recursive
algorithm is given.
Cannot contrast
the recursive
solution with the
corresponding
non-recursive
solution.

Is unable to
understand how
recursion works. Is
unable to develop
recursive solutions
to problems even if
the recursive
algorithm is given.

Understand
and
demonstrate
the use of
pointers in
indirect
addressing
and dynamic
memory
allocation.

Demonstrate
strong
understanding of
the concept of
pointers. Is able to
use pointers
effectively in
indirect addressing
and dynamic
memory
allocation in a
great variety of
scenarios.

Demonstrate sufficient
understanding of the
concept of pointers. Is
able use
pointerseffectively in
indirect addressing and
dynamic memory
allocation in standard
scenarios.

Demonstrate
marginal
understanding of
the concept of
pointers. Is able to
use pointers in
indirect addressing
and dynamic
memory allocation
only in simple
scenarios.

Demonstrate little
understanding of
the concept of
pointers. Have great
difficulty inusing
pointers in indirect
addressing and
dynamic memory
allocation even in
simple scenarios.

COMP2011
Page 4 of 4

Spring 2023-24

Understand
and
demonstrate
the use of
various data
structures.

Is able to choose
the appropriate
data structures
such as linked
lists, stacks and
queues to solve
problems, and

Is able to use the
required data
structures such as
linked lists, stacks and
queues to solve
problems, and
implement the

Is able to use the
required data
structures such as
linked lists, stacks
and queues to solve
simple problems,
and

Demonstrate little
understanding of
data structures such
as linked lists,
stacks and queues,
and is unable to use
them to solve

 implement the
solution in C++ on
one's own.

solution in C++ on
one's own.

implement the
solution in C++
with guidance.

problems even with
guidance.

Implement an
abstract data
type (ADT) by
defining a
class in C++.

Given the
description of a
simple ADT, is
able to implement
it with a complete
C++ class
definition that
includes
appropriate class
members and class
member functions.
Is able to write
programs that
create and
manipulate ADT
objects.

Given the description
of a simple ADT, able
to implement it with a
complete C++ class
definition when its
class members and
class member
functions are also
hinted. Is able to write
programs that create
and manipulate ADT
objects.

Given the
description of the
C++ class
definition of a
simple ADT,
including its class
members and class
member functions,
is able to
implement the
member functions.
Sometimes is able
to write programs
that create and
manipulate ADT
objects.

Have great difficulty
in understanding the
link between a
simple ADT and its
C++ definition. Is
unable to complete
C++ definition for
simple ADTs and to
program with C++
classes.

