The Hong Kong University of Science and Technology Department of Civil and Environmental Engineering

Course code	CIVL 4220
Course title	Scientific Machine Learning for Infrastructure Systems
Instructors	Jize ZHANG
Prerequisites	MATH2111 or MATH 2121 or MATH 2131 or MATH 2350 AND
	COMP1021 or COMP 1022P or COMP 1029P
Credit	3
Textbook(s) and/or	Kevin P. Murphy. 2022. Probabilistic Machine Learning: An Introduction,
other materials	MIT Press,
	Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. <i>Deep Learning</i> ,
	MIT Press,
	Christopher Bishop. 2006. Pattern Recognition and Machine Learning,
	Springer.
Course Objectives	1. Represent uncertainty in parameters in civil engineering system models
	using probability and statistical techniques;
	2. Solve basic supervised learning tasks, such as: regression, classification,
	dimensionality reduction and density estimation:
	3 Create civil engineering domain-specific machine learning models that
	encode existing physical information and other causal assumptions
	4. Apply basic Python software (e.g., numpy, scipy, scikit-learn) and
	advanced Python software (e.g., pytorch, Julia, Jax) for modelling and
	analyzing civil engineering systems.
Topics	Fundamentals of probability models
	Uncertainty Propagation and Bayesian Inference
	Supervised and Unsupervised Learning
	Gaussian Process
	Deep Neural Networks
	Advanced Topics
Computer usage	Computational software toolboxes allowed
Lab Projects	No lab work required
Class/lab schedule	Two 80-minute lectures per week
Contribution to the	40% understanding fundamentals of probabilistic and statistics topics
professional	40% modelling and solving probability-related problems in civil engineering
component	20% mastering / utilizing numerical methods and tools to solve problems
Relationship to	1. Provide probability and statistical skills in civil engineering design,
program objectives	construction and management
	This course conveys statistics and probability knowledge which can be used to
	address uncertainties in engineering design, construction and management.
	2 Stimulate self learning through onen anded problems
	2. Sumulate set - tearning intrough open-ended problems
	of computing software toolboxes, which are utilized to treat traditionally
	tedious problems efficiently and creatively on computers.
Relationship to	1. Obtain fundamental knowledge in mathematics and science
program outcomes	Students learn the fundamental theories of probability and statistics, and apply
1 0	them in practical scenarios involving uncertainties in civil engineering
	systems.
	2. Acquire an ability to apply modern engineering and IT tools
	Students are taught to use state-of-the-art computing software toolboxes such
	Students are taught to use state of the art computing software toolboxes such
	as Python

	 3. Develop an ability to identify and formulate civil engineering problems and propose feasible solutions Students are frequently exposed to examples/scenarios with open-ended design questions, which require them to apply theories learnt to define, formulate and eventually analyze the uncertainty of civil engineering systems of concern. 4. Develop an appreciation of the breath of civil engineering and acquire
	<i>basic knowledge in several disciplines</i> Students are exposed to non-deterministic problems from multiple disciplines of civil engineering, and hence made aware that uncertainty exists in all types of science and engineering scenarios.
Assessment of Outcomes	 Assignments are given to students to facilitate learning in the subject (for outcomes 1, 2, 3, 4) Final projects and literature review reports will be required to assess student understanding during the learning process (for outcomes 1, 2, 3)
Prepared by	Jize ZHANG
Date	23 Jan 2024