Rubric	CIVL3740
Tile of course	Geotechnical Analysis and Design
Instructor	Professor Pui San SO (Email: cepsso@ust.hk)
Course catalog	This course is about the applications of fundamental principles
description,	of soil and rock mechanics to geotechnical analyses and
prerequisites, and credit	designs. It covers lateral earth theories, design of earth
	retaining structures, braced cuts or multi-propped excavations,
	shallow and deep foundations, slope stability and reinforced
	earth structures, and introduction of basic rock mechanics.
	(Prerequisite: CIVL3730; Credit: 3)
Textbook(s) and/or	• Craig. R.F. (2012) Soil Mechanics. 8th edition, E & FN
other required material	SPON.
	• Budhu. M. (2011). Soil Mechanics and Foundations
	John Wiley, 3rd edition.
	• Das. B. M. (2011). Principles of Foundation
	Engineering. 7th edition, 2011.
	• Das. B. M. (2012). Fundamentals of Geotechnical
	Engineering. 4th edition.
	• Ng, C.W.W., Simons, N. & Menzies, B. (2008). Soil-
	structure Engineering of Deep Foundations,
	Excavations and Tunnels. Publisher: Thomas Telford,
	UK. 3rd Reprint. 416p.
	• Powrie. W. (2004). Soil Mechanics - Concept and
	Applications, 2nd edition, E & FN SPON.
Course objectives	This course will enable students to:
	• Understand the basic principles of soil mechanics
	• Comprehend and apply the basic soil mechanics
	theories in the design of earth retaining structures,
	braced cuts or multi-propped excavations, shallow and
	deep foundations, slope stability and reinforced earth
	structures
	• Improve the ability of solving geotechnical problems
	independently and scientifically
Topics/chapters	1. Lateral earth pressure
	1.1 Lateral earth pressure at rest (Ko)
	1.2 Rankine's theory
	1.3 Coulomb's theory
	1.4 Assignment and worked examples
	2 Design of notaining wells
	2. Design of retaining wans
	2.1 General design philosophy
	2.2 Gravity & califiever concrete wans
	2.5 Calification of the sheet pile walls
	2.5 Soil arching
	2.5 Son arching 2.6 Pore pressure distributions behind retaining wall
	2.5 Tore pressure distributions beinne retaining wan 2.7 Assignment and worked examples
	2.7 Absignment and worked examples
	3. Braced cuts or multi-propped excavations
	3.1 General design philosophy
	3.2 Short-term lateral wall stability & strut loads
	3.3 Base heave in clavs
	3.4 Piping in sands
	3.5 Ground settlement & swelling

	3.6 Assignment and worked examples
	4. Shallow Foundations
	4.1 General behaviour and design principles
	4.2 Terzagin's general utilitate bearing capacity theory
	4.5 Other bearing capacity meones
	4.4 Ventical stress distributions below shahow foundations
	4.5 Settlements of shallow foundations
	4.0 Assignment and worked examples
	5. Deen Foundations
	5.1 Types and uses of pile foundations
	5.2 Design principles of vertically loaded single piles
	5.3 Design of rock socketed piles
	5.4 Negative skin friction
	5.5 Pile load tests
	5.6 Assignment and worked examples
	6. Slope Stability
	6.1 Slope characterisation
	6.2 Methods of slope stability analysis
	6.3 Practical consideration of methods of analysis
	6.4 Choice between total and effective stress analysis
	6.5 Assignment and worked examples
	7. Reinforced Earth Structures
	7.1 Types and considerations of soil reinforcement
	7.2 Failure mechanisms
	7.3 Assignment and worked examples
	8. Introduction of Rock Mechanics
	8.1 Composition and characteristics of the rock
	8.2 Rock mechanical properties and influencing factors
	8.3 Rock strength and failure criterion
Computer usage	Required for showing ppt
Laboratory projects	Not required
Class schedule	Lecture: 3 hours/week; Tutorial: 100 mins/week
Contribution to the	100% engineering topics
professional component	
Relationship to program	This course contributes to the following objectives:
objectives	• Provide students with professional skills in the design,
	construction and management of the civil infrastructure.
	This course provides a detailed instruction of the
	fundamentals of benaviour and design of geotechnical
	problems. Challenge students with research type and onen anded
	• Channenge students with research-type and open-ended
	innovative problem solving skills. This course requires
	students to analyse geotechnical problems and apply
	problem-solving skills to develop an appropriate design
	solution
	• Expose students to real world engineering projects as
	well as cutting edge research to improve their
	understanding of the profession and technological

	advancements that can improve current practice. This
	course covers the state-of-the-art design of geotechnical
	infrastructure in detail, and illustrate comprehensively
	how these designs are related to the technological
	advancements.
Relationship to program	This course contributes to the following program outcomes:
outcomes	• Understand fundamental principles of engineering science relevant to civil engineering disciplines. This course provides the fundamentals of basic soil mechanics and their applications in geotechnical problems.
	• Develop an ability to identify and formulate civil engineering problems, and propose feasible solutions with an appreciation of their underlying assumptions, uncertainties, constraints, and technical limitations. This course provides the basic skills to tackle geotechnical problems and their pros and cons.
	• Develop technical competency to design civil engineering components and systems, with an understanding of the principles behind the design methodologies. This course equips the students with state-of-the-art knowledge in the design of retaining wall, excavation, foundation, etc.
	• Obtain in-depth knowledge in at least one major area of specialization within civil engineering. This course provides the advanced knowledge in geotechnical design.
	• Develop an ability to stay abreast of contemporary issues, both nationally and internationally, and the awareness of the impact of engineering in these areas. This course can provide the basic solutions to the geotechnical disasters at home and abroad.
Assessment of outcomes	 Assignments = 10%, there are 5 assignments Mid-term examination= 30%
	• Final examination= 60%
Prepared by	Pui San SO
Date	23 January 2024