CENG4130 Plant Design and Economics syllabus (tentative)

Instructor: Marshal LIU, keysliu@ust.hk

PG TA: Stuart ROBERSON. sjrobertson@connect.ust.hk

UG TA: tbc

Blended learning

• More personalized learning (watch lecture video outside of class)

• More interaction (discussion and Homework in class)

Intended Learning Outcomes (ILOs)

By the end of the course, learners will be able to:

- demonstrate mastery of economic analysis in chemical process and/or product development;
- make meaningful estimates on various economic aspects such as the capital investment, product cost, depreciation and profitability of an existing or new chemical process or project;
- be aware of the importance of environment/health issues in chemical industry;
- apply process safety management program, industrial hygiene, fire and explosion, toxic release and dispersion, and pressure relief system, conduct Hazards Identification, Risk Analysis, and HAZOP;

Weekly schedule

	ILOs	Module title and Topics	Tasks/Submissions/in-class	Remarks
1	 Describe the purpose of the blended learning approach Recall the course content and learning outcomes Explain the importance of plant design and economics 	 Course overview and BL Overview Students will be introduced to the blended learning approach Course introduction Introduce the importance of plant design. 	 Discuss the economics for a typical chemical plant, converting coal to methanol After 1st F2F class meeting, start online materials Module 1 	
2	Estimate capital investment and equipment cost	Lecture video/notes on process economics, capital investment, equipment cost estimation, etc.	 In-class: Scenario-based quiz questions to check understanding of online materials In-class: Tutorials on estimating investment and equipment cost 	
3	 List the components in TPC Calculate the depreciation Incorporate time value for financial analysis 	Total Product Cost (Time Value and Depreciation) ■ Lecture notes and video on TPC components, time value of money, and depreciation	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate product cost, incorporate time value for financial analysis and determine depreciation 	
4	 Plot cash flow diagram Determine criteria for profitability analysis 	 Cash position diagram and Profitability criteria Lecture notes and video on cash flow, cash position, minimum attractive rate 	 Online: Scenario-based quiz questions to check understanding of online materials In class: Activities to plot cash flow diagram, and determine m_{ar} 	
5	 Use various methods for profitability analysis Incorporate time value of money into profitability analysis 	 Profitability Analysis Lecture video/notes on profitability analysis with/without time value 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Tutorials on profitability analysis calculation 	
6	 Compare alternative investment. Evaluate replacement for equipment 	 Alternative Investments & Replacement Lecture video/notes on Alternative investment and replacement Debrief Financial Project 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Tutorial and debate to weigh out pros and cons for replacement of equipment and alternative investment 	

7	 Describe the major methods on process safety management Identify the possible reason for accidents Evaluate the chemical exposure 	Videos investigating past accidents from Chemical Safety Board Video on occupational safety	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze case studies on accident prevention and process safety management to real life cases, and tutorial on chemical exposure calculation
8	 Implement fire and explosion prevention measures in process design 	 Fire and Explosion Prevention Lecture video/notes on fire and explosion 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to design a floated roof tank for flammable liquid with fire and explosion prevention measures in mind
9	Calculate the release and dispersion of toxics	 Toxic Release and Dispersion Lecture video/notes on the toxic release and dispersion 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate toxic release and dispersion of Fukushima or other real life situations and implications on public.
10	Select the scenario and type of pressure relief	 Pressure Relief Lecture video/notes on pressure relief 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze cases on selection of pressure relief device and scenarios to real life case
11	Conduct HAZOP	 HAZOP (Hazard and Operability Study) Lecture notes and other learning resources on HAZOP Debrief HAZOP Project 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze and apply HAZOP to real life case
12	 Calculate the reliability for various safety components Construct Fault Tree and Event Tree 	 Reliability, Fault tree and Event Tree Lecture video/notes on reliability, Fault tree and Event tree 	 Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to apply Safety and reliability to real life case, construct a Fault Tree, Event Tree and risk calculation
13	Q&A for HAZOP projectCourse wrap-up	Reviewing HAZOP Videos and prepare Q&A	 In-class: Q&A on HAZOP project Course summary

* Because there are no classes on week 12 & 13 (public holidays), the schedule will be condensed to 11 weeks only.

Assessments

	Components	Weighting	Details
1	Out-of-class Quizzes (self-assessment)	14%	2 attempts are allowed.
2	Class discussion and participation	8%	Either post a valid question in online forum or give an answer to
	Online forum participation, 4 questions with 4 points		questions posted by others.
			At least 2 questions for economics and 2 for safety part.
3	Homework *4	10%	Consolidate/practice calculations (help prep for final)
3	Group Project 1: Financial Report (Economics)	10%	Written Report
4	Group Project 2: HAZOP (Safety)	10%	Video presentation + Q&A
5	Peer Evaluation	8%	Contribution to group discussion, homework and project
6	Final Exam	40%	Open book, computer and internet

Textbook

- Peter, M.S. Timmerhaus, K.D. & West, R.E. Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill 2003
- Crowl, D.A. and Louvar, J.F. Chemical Process Safety: Fundamentals with Applications. Prentice Hall International Series, 3rd, 2011. http://my.safaribooksonline.com/book/chemistry/9780132762489

References

- Towler and Sinnott. Chemical Engineering Design. Elsevier, 2008. E-book
- Turton, Bailie, Whiting & Shaeivitz. Analysis, Synthesis, and Design of Chemical Processes, 3rd edition, Prentice Hall PTR 2009