CENG4130 Plant Design and Economics syllabus (tentative) Instructor: Marshal LIU, keysliu@ust.hk PG TA: Stuart ROBERSON. sjrobertson@connect.ust.hk UG TA: tbc # **Blended learning** • More personalized learning (watch lecture video outside of class) • More interaction (discussion and Homework in class) # **Intended Learning Outcomes (ILOs)** By the end of the course, learners will be able to: - demonstrate mastery of economic analysis in chemical process and/or product development; - make meaningful estimates on various economic aspects such as the capital investment, product cost, depreciation and profitability of an existing or new chemical process or project; - be aware of the importance of environment/health issues in chemical industry; - apply process safety management program, industrial hygiene, fire and explosion, toxic release and dispersion, and pressure relief system, conduct Hazards Identification, Risk Analysis, and HAZOP; # Weekly schedule | | ILOs | Module title and Topics | Tasks/Submissions/in-class | Remarks | |---|--|---|--|---------| | 1 | Describe the purpose of the blended learning approach Recall the course content and learning outcomes Explain the importance of plant design and economics | Course overview and BL Overview Students will be introduced to the blended learning approach Course introduction Introduce the importance of plant design. | Discuss the economics for a typical chemical plant, converting coal to methanol After 1st F2F class meeting, start online materials Module 1 | | | 2 | Estimate capital investment and equipment cost | Lecture video/notes on process economics, capital investment, equipment cost estimation, etc. | In-class: Scenario-based quiz questions to
check understanding of online materials In-class: Tutorials on estimating
investment and equipment cost | | | 3 | List the components in TPC Calculate the depreciation Incorporate time value for financial analysis | Total Product Cost (Time Value and Depreciation) ■ Lecture notes and video on TPC components, time value of money, and depreciation | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate product cost, incorporate time value for financial analysis and determine depreciation | | | 4 | Plot cash flow diagram Determine criteria for profitability
analysis | Cash position diagram and Profitability criteria Lecture notes and video on cash flow, cash position, minimum attractive rate | Online: Scenario-based quiz questions to check understanding of online materials In class: Activities to plot cash flow diagram, and determine m_{ar} | | | 5 | Use various methods for profitability
analysis Incorporate time value of money into
profitability analysis | Profitability Analysis Lecture video/notes on profitability analysis with/without time value | Online: Scenario-based quiz questions to
check understanding of online materials In-class: Tutorials on profitability analysis
calculation | | | 6 | Compare alternative investment. Evaluate replacement for equipment | Alternative Investments & Replacement Lecture video/notes on Alternative investment and replacement Debrief Financial Project | Online: Scenario-based quiz questions to check understanding of online materials In-class: Tutorial and debate to weigh out pros and cons for replacement of equipment and alternative investment | | | 7 | Describe the major methods on process
safety management Identify the possible reason for
accidents Evaluate the chemical exposure | Videos investigating past accidents from Chemical Safety Board Video on occupational safety | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze case studies on accident prevention and process safety management to real life cases, and tutorial on chemical exposure calculation | |----|---|--|---| | 8 | Implement fire and explosion
prevention measures in process design | Fire and Explosion Prevention Lecture video/notes on fire and explosion | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to design a floated roof tank for flammable liquid with fire and explosion prevention measures in mind | | 9 | Calculate the release and dispersion of toxics | Toxic Release and Dispersion Lecture video/notes on the toxic release and dispersion | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to calculate toxic release and dispersion of Fukushima or other real life situations and implications on public. | | 10 | Select the scenario and type of pressure relief | Pressure Relief Lecture video/notes on pressure relief | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze cases on selection of pressure relief device and scenarios to real life case | | 11 | Conduct HAZOP | HAZOP (Hazard and Operability Study) Lecture notes and other learning resources on HAZOP Debrief HAZOP Project | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to analyze and apply HAZOP to real life case | | 12 | Calculate the reliability for various
safety components Construct Fault Tree and Event Tree | Reliability, Fault tree and Event Tree Lecture video/notes on reliability, Fault tree and Event tree | Online: Scenario-based quiz questions to check understanding of online materials In-class: Activity to apply Safety and reliability to real life case, construct a Fault Tree, Event Tree and risk calculation | | 13 | Q&A for HAZOP projectCourse wrap-up | Reviewing HAZOP Videos and prepare Q&A | In-class: Q&A on HAZOP project Course summary | * Because there are no classes on week 12 & 13 (public holidays), the schedule will be condensed to 11 weeks only. #### Assessments | | Components | Weighting | Details | |---|---|-----------|---| | 1 | Out-of-class Quizzes (self-assessment) | 14% | 2 attempts are allowed. | | 2 | Class discussion and participation | 8% | Either post a valid question in online forum or give an answer to | | | Online forum participation, 4 questions with 4 points | | questions posted by others. | | | | | At least 2 questions for economics and 2 for safety part. | | 3 | Homework *4 | 10% | Consolidate/practice calculations (help prep for final) | | 3 | Group Project 1: Financial Report (Economics) | 10% | Written Report | | 4 | Group Project 2: HAZOP (Safety) | 10% | Video presentation + Q&A | | 5 | Peer Evaluation | 8% | Contribution to group discussion, homework and project | | 6 | Final Exam | 40% | Open book, computer and internet | ### Textbook - Peter, M.S. Timmerhaus, K.D. & West, R.E. Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill 2003 - Crowl, D.A. and Louvar, J.F. Chemical Process Safety: Fundamentals with Applications. Prentice Hall International Series, 3rd, 2011. http://my.safaribooksonline.com/book/chemistry/9780132762489 ### References - Towler and Sinnott. Chemical Engineering Design. Elsevier, 2008. E-book - Turton, Bailie, Whiting & Shaeivitz. Analysis, Synthesis, and Design of Chemical Processes, 3rd edition, Prentice Hall PTR 2009