CENG1800 Introduction to Food Science & Technology, 2024 (Tentative)

Instructor: Marshal LIU Office: 4551, Tel: 2358 8409 Email: keysliu@ust.hk **TAs:** YANG Ziqing zyangbr@connect.ust.hk; LUO Hang hluoat@connect.ust.hk

LI Jiashuo jlija@connect.ust.hk; WANG Chaoqi cwangdq@connect.ust.hk

Class Schedule: Lecture: Tue 4:30 - 5:50 Room G009B

Lab 1: 10:30-11:50am, Lab 2: 1:30-2:50pm, Wed, Rm 2007, CYT Bldg,

Teaching schedule:

Week	Lecture / Lab Topics	Remarks
1	Lect: no lecture	
	Jan 31: No lab	
2	Lect: Course introduction	
	Feb 7: Lab tour, group forming.	
3	Lect: Scientific principles (chemistry, deterioration)	
	Feb 14: No lab during add/drop period	
4	Lect: Scientific principles	
	Feb 21: Experiment A & B	
5	Lect: Sensory evaluation	Quiz 1
	Feb 28: Experiment B & A	
6	Lect: Nutrition	
	Mar 6: Experiment C & D	
7	Lect: Food Separation	HW1
	Mar 13: Experiment D & C	
8	Lect: Fermentation	
	Mar 20: Experiment E & F	
9	Lect: Thermal processing (Blanching, Pasteurization, Sterilization, Drying)	Quiz 2
	Mar 27: Experiment F & E	
10	Lect: Food Preservation (Chilling, Freezing, Freeze drying)	
	Apr 10: Experiment G & H	
11	Lect: Food safety, additives, law and regulation	HW2
	Apr 17: Experiment H & G	
12	Lect: Functional food, future food	HW3
	Apr 24: Industrial visit / optional for project with experiment	
13	Lect: Food waste management, advanced processing technologies	Quiz 3
	May 1: Public holiday	
14	Group project presentation and Course wrap-up	
	May 8: No lab	

^{*} Industrial talk may be arranged during lecture/tutorial time.

Lab session:

- Totally 8 experiments, and every student submits two short report (max 5 pages).
- A group comprises 4 students from different departments (better from different schools and levels). Form your own group in the first two weeks, otherwise, you will be assigned.
- All reports should be submitted within one week after finishing the experiment and obtaining data.

Learning outcomes:

- 1) Identify the major nutrients and chemical components in food, and how they meet body's needs;
- 2) Understand the principle and operation of food related systems, and the physical or chemical methods used in food processing, preservation and production;
- 3) Appreciate importance of safe, sustainable and economical practices when developing and using relevant technologies;
- 4) Critically examine the contemporary issues related to food
- 5) Obtain hands-on experience on food processing through experiments;
- 6) Design a food product, process or facility by incorporating food science, technology, safety, and economical aspects;

Components of Assessment:

•	Class participation and performance	(5%)
•	3 Assignments	(10%)
•	3 Quizzes (open book)	(45%)
•	Lab performance and two short reports	(30%)
•	Group project (Video presentation)	(10%)

Reference:

- 1) Vaclavik, Vickie A. & Christian, Elizabeth W. Essentials of Food Science, 3rd edition, Springer, 2014 E-book
- 2) Shewfelt, Robert L., Boca Raton. Introducing Food Science. CRC press, 2009,
- 3) McWilliams, Margaret. Food Fundamentals, 10th edition, Pearson, 2013,
- 4) Fellows PJ. Food Processing Technology Principles and Practice (3rd Ed.). Woodhead Publishing, 2009 E-book.
- 5) Zeki Berk. Food Process Engineering and Technology, Academic Press, 2013
- 6) Coultate, TP. Food The Chemistry of its Components (5th Ed.). 2009