MECH 2210-L2 FLUID MECHANICS

(Spring 2022/2023)

Course Description:

Fundamental concepts; fluid statics; fluid kinematics, integral and differential equations of fluid flows; conservation of mass, momentum and energy; dimensional analysis; pipe flows, external flows, and nanofluidics.

Prerequisites: MATH 2011/2023, MECH 2310

References: Fundamentals of Fluid Mechanics, 5th or 6th edition

B.R. Munson, D.F. Young and T.H. Okiishi (Wiley and Sons, 2006/10)

Mechanics of Fluids (Cengage Learning, 2015) M.C. Potter, D.C. Wiggert, and B.H. Ramadan

Nanofluidics: An Introduction, 1st edition Zhigang Li (CRC-Taylor & Francis, 2018)

Instructor: Dr. Lin FU (Tel: 3469 2969 Email: linfu@ust.hk Room: 2606A)

Lecture hours: 2 sessions/week, 80 minutes/session (3 credits)

Office hours: 3:00-5:00pm Thursday or by appointment

Teaching Assistants: Mr. Anjia Ying <u>aying@connect.ust.hk</u>

Mr. Qichao Li <u>qlich@connect.ust.hk</u>

Detailed Course Outline (times are subject to changes)

Chapter 1. Introduction

week 1

- 1.2 Dimensions and units
- 1.4 Measures of fluid mass and weight
- 1.5 Ideal gas law
- 1.6 Viscosity
- 1.7 Compressibility
- 1.8 Vapor pressure
- 1.9 Surface tension

Chapter 2. Fluid Statics

weeks 2-3

- 2.1 Pressure at a point
- 2.2 Basic equation for pressure field
- 2.3 Pressure variation in a fluid at rest
- 2.4 Standard atmosphere
- 2.5 Measure of pressure
- 2.6 Manometry
- 2.8 Hydrostatic force on a plane surface
- 2.9 Pressure prism
- 2.10 Hydrostatic force on a curved surface
- 2.11 Buoyancy and stability
- 2.12 Pressure variation in a fluid with rigid-body motion

Chapter 3. Fluids in Motions

weeks 3-4

- 3.1 Newton's second law
- 3.2 F=ma along a streamline

3.3 F=ma normal	to a streamline	
3.4 Physical interp	pretation	
•	ion, dynamic, and total pressure	
3.6 Application of	· •	
Chapter 4. Kinematics of Fluid Motion		weeks 4-5
4.1 Velocity field		
4.2 Acceleration f	ield	
4.3 Control volum	ne and system	
4.4 The Reynolds	•	
Chapter 5. Flow analysis using C.V.		weeks 6-7
5.1 Continuity equ		
· ·	tum equation (5.2.3, 5.2.4 not required)	
5.3 Energy equation	- · · · · · · · · · · · · · · · · · · ·	
Chapter 6. Differential m		week 7-9
6.1 Fluid element		
6.2 Mass conserva		
	of linear momentum	
	(6.4.2 not required)	
6.5 Potential flow	· · · · · · · · · · · · · · · · · · ·	
6.8 Viscous flow		
	ns for viscous, incompressible fluids	
019 2111p10 2010112	110 101 110 00000, 1110 0111p1 0201010 110100	
Mid-term TBD		week 9/10
Chapter 8. Pipe Flows		weeks 10-11
	cteristics of pipe flow	
8.2 Fully develope		
	ed turbulent flow (discussed but not required)	
	nalysis (8.4.3 not required)	
Chapter 9. External Flows		weeks 11-12
	nal flow characteristics	
	er (briefly discussed but not required)	
9.3 Drag		
9.4 Lift		
Chapter 10. Introduction to Nanofluidics		weeks 13
10.1 Introduction		
10.2 Methodologi		
•	s and their implications	
10.4 Nanofluidic	diodes	
Grading Policy (TBD)		
Homework	10%	
Mid-term exam	40%	

Fina exam

50%