

COMP 2012
Page 1 of 3

Spring 2022-23

Course Code
COMP 2012

Course Title
Object-Oriented Programming and Data Structures

Course Description

To learn the fundamental concepts and techniques behind object-oriented programming.
They include: abstract data types; creation, initialization, and destruction of objects; class
hierarchies; polymorphism, inheritance and dynamic binding; generic programming using
templates. To learn the object-oriented view of data structures: linked lists, stacks, queues,
binary trees, and algorithms such as searching and hashing. Prerequisite(s): COMP 2011
Exclusion(s): COMP 2012H

List of Topics

1. Revision of dynamic data structures
2. C++ class basics
3. Separate compilation and makefile
4. Constructors, destructor, initialization
5. Inheritance, polymorphism, and dynamic binding
6. Generic programming
7. STL: containers, iterators, algorithms
8. Namespace
9. Static member functions/data
10. Hashing
11. Binary search trees
12. AVL trees
13. rvalue reference and move semantics

Textbooks & Reference books

Paul Deitel, Deitel & Associates (2017). C++ How to Program

M.A. Weiss (2014). Data Structures and Algorithm Analysis in C++.

Data Structures and Algorithm Analysis Ed. 3.2 (C++ Version).

B. Eckel (2000). Thinking in C++.

L. Nyhoff (2005). ADTs, Data Structures and Problem Solving with C++.

Stanley Lippman (2013). C++ Primer.

COMP 2012
Page 2 of 3

Spring 2022-23

Grading Scheme

Programming assignment – PA1 9%
Programming assignment – PA2 9%
Programming assignment – PA3 9%
Laboratory exercises 10%
Midterm 25%
Final examination 38%
Total 100%

Course Intended Learning Outcomes

1. Write object-oriented programs in C++ with object creation, destruction, member
variables and functions, inheritance, polymorphism, and templates.

2. Analyze simple problems and provide solutions with OOP.
3. Understand the basic operations of data structures such as stacks, queues, lists,

binary search trees, and hashes, and their implementations.
4. Demonstrate the ability to use the learned data structures to solve problems in C++.
5. Develop large programs using separate compilation, good OOP design, and code

reuse through the use of inheritance, generic programming and the standard
template library.

Assessment Rubrics

Course
Learning
Outcome

Exemplary Competent Needs Work Unsatisfactory

1. Write object-
oriented programs
in C++ with
object creation,
destruction,
member variables
and functions,
inheritance,
polymorphism,
and templates.

Demonstrate a
comprehensive
grasp of object-
oriented
concepts and
fully
demonstrates
how to write
object-oriented
programs in
C++.

Demonstrate a
thorough grasp
of object-
oriented
concepts and
mostly
demonstrates
how to write
object-oriented
programs in
C++.

Demonstrate a
basic grasp of
object-oriented
concepts and
barely able to
demonstrate
how to write
object-oriented
programs in
C++.

Demonstrate a
lack of grasp of
object-oriented
concepts and fail
to demonstrate
how to write
object-oriented
programs in C++.

COMP 2012
Page 3 of 3

Spring 2022-23

Course
Learning
Outcome

Exemplary Competent Needs Work Unsatisfactory

2. Analyze simple
problems and
provide solutions
with OOP.

Demonstrate an
exemplary
ability to
analyze
problems and
solve them
using OOP.

Demonstrate a
proficient
ability to
analyze
problems and
solve them
using OOP.

Demonstrate a
developing
ability to
analyze
problems and
solve them
using OOP.

Demonstrate
deficiencies in
their ability to
analyze problems
and solve them
using OOP.

3. Understand the
basic operations
of data structures
such as stacks,
queues, lists,
binary search
trees, and hashes,
and their
implementations.

Demonstrate
excellent
understanding
of the basic
operations of
the learned data
structures and
ability to
implement
them.

Demonstrate
sufficient
understanding
of the basic
operations of
the learned data
structures and
ability to
implement
them.

Demonstrate
limited
understanding
of the basic
operations of
the learned data
structures and
limited ability
to implement
them.

Demonstrate a
lack of
understanding of
the basic
operations of the
learned data
structures and
inability to
implement them.

4. Demonstrate
the ability to use
the learned data
structures to solve
problems in C++

Demonstrate an
exemplary
ability to use
the learned data
structures to
solve problems
in C++.

Demonstrate a
proficient
ability to use
the learned data
structures to
solve problems
in C++.

Demonstrate a
developing
ability to use
the learned data
structures to
solve problems
in C++.

Demonstrate
deficiencies in
the ability to use
the learned data
structures to
solve problems in
C++.

5. Develop large
programs using
separate
compilation, good
OOP design, and
code reuse
through the use of
inheritance,
generic
programming and
the standard
template library.

Demonstrate
complete
comprehension
of OOP
concepts and
techniques for
the
development of
large programs.

Demonstrate
basic
comprehension
of OOP
concepts and
techniques for
the
development of
large programs.

Demonstrate
minimal
comprehension
of OOP
concepts and
techniques for
the
development of
large programs.

Demonstrate no
comprehension
of OOP concepts
and techniques
for the
development of
large programs.

