1	Course Code:	CIVL4100R (Spring 22-23)		
2	Course Title:	Practical Machine Learning for Smart Infrastructure Systems		
3	Course Credits:	3		
4	Class Quota:	50		
5	Duration / Offering Term:	Spring semester		
6	Lecture/tutorial/lab hour	Two 1.5-hour lectures per week		
	per week			
7	Targeted Student Group:	Years 3 and 4 UG students, PG Students		
8	Prerequisite (if any):	MATH1014/1024, MATH 2350, and		
		COMP1021/1022P/2011/2012H		
9	Exclusion (if any):			
10	Corequisite (if any)			
11	Instructor:	Prof. Jize ZHANG (<u>cejize@ust.hk</u>)		
12	Freedland at an endine and	Prof. Zhe WANG (<u>cezwang@ust.hk</u>)		
12	Enrollment requirement			
	<pre>(e.g., Instructor's approval is required):</pre>			
13	Course Description:	This course covers fundamental machine learning concepts and		
12	(within 150 words)	hands-on experience about smart infrastructure system		
		applications. Lectures will cover the "full stack" of machine		
		learning, including data cleaning and pre-processing, machine		
		learning, and reinforcement learning. The covered topics		
		include: collecting and processing real-world project data,		
		detecting abnormal data, and imputing missing data; analyzing		
		the data with a variety of machine learning methods including		
		linear & logistic regression, decision tree, SVM, unsupervised		
		learning (clustering, PCA), and advanced machine learning		
		methods (ensemble learning and deep learning). Last, we will introduce reinforcement learning to build autonomous		
		infrastructure systems that learn to make good decisions.		
		One key feature of this course is its application-driven nature. All applications of this course are about smart infrastructure		
		systems. Through those applications, students will know how ML		
		can be applied in their future career and research.		
14	Tentative course	This course will have four project-themed modules: smart		
17	structure:	building with supervised learning, smart structure with deep		
	Structure.	learning, smart structure with time-series machine learning, and		
		sustainable building operation with reinforcement learning. The		
		syllabus of this course is attached at the end of this document.		
15	Intended learning	On successful completion of this course, students are expected		
	outcomes (ILOs) of the course:	to be able to:		
		1. Learn the fundamentals concepts and experience hands-on		
		applications of machine learning to smart infrastructure systems		
		2. Understand the domain knowledge of smart building, smart		
		structures, and sustainable building operations		

16	Rationale for introducing the course:	 3. Apply a variety of supervised, unsupervised and reinforcement learning algorithms to practical civil engineering problems 3. Learn practical skills to improve the machine learning models Machine learning is the fundamental skillsets that students need to master in this artificial intelligence era. Learning machine 		
		learning can help our students to lead the digitalization and smart transition of our industry.		
		The proposed course and syllabus is aligned with the following programme objectives for our UG programmes:		
		POE1 Provide students with professional skills in the design, construction and management of the civil infrastructure, as well as an awareness of environmental sustainability.		
		POE3 Challenge students with research-type and open-ended design problems to stimulate self-learning and innovative problem solving skills.		
		POE4 Expose students to real world engineering projects as well as cutting edge research to improve their understanding of the profession and technological advancements that can improve current practice.		
17	Textbook / Reference	1. Python for Data Analysis 3rd Edition, Wes McKinney, O'Reilly		
	books:	Media, Inc: https://wesmckinney.com/book/ 2. Probabilistic Machine Learning: An Introduction		
		Kevin Patrick Murphy, MIT Press:		
		https://github.com/probml/pml-		
		book/releases/latest/download/book1.pdf		
18	Grading Scheme	Projects (20% * 4), In-class Quiz (5%*4)		
19	Grading Type (PP/P/F/Letter)	Letter		
20	With endorsement of UG coordinator			

Course Schedule

Week	Lecture Topic		Project
1	Course introduction	Pandas ${ m I}$	
2	Pandas II	Time series data	
3	Data cleaning	Data visualization	
4	Supervised learning: linear &	Supervised learning: decision tree,	P1: Thermal preference
	logistic regression	SVM	prediction
5	Unsupervised learning:	Ensemble learning: bagging,	
	clustering, PCA	boosting, random forests	
6	Neural networks	Introduction to computer vision	
		problems	
7	Deep convolutional neural	Deep convolutional neural	P2: Structural defects
	networks I	networks II	detection
8	Practical strategies:	Hyper-parameter tuning	
	regularization, optimizers		
9	Introduction to time series	Recurrent neural networks	P3: Structural response
	problem		prediction
10	Rethink time series problems	RL: problem statement and	
		introduction	
11	Markovian Decision Process	Imitation Learning & model-based	
		RL	
12	Reinforcement learning	Reinforcement learning algorithms	P4: Building energy
	algorithms I	II	system control
13	Course review		