The Hong Kong University of Science and Technology #### IEDA3270 Data-Driven Quality Technology **Data-Driven Quality Technology** **IEDA3270** 3 Credits Prerequisites: Basic knowledge of statistics, data analysis, and engineering principles. Name: Fugee Tsung Email: season@ust.hk # **Course Description** IEDA3270 **Data-Driven Quality Technology** equips students to monitor, diagnose, and improve product or service quality by integrating classical quality-engineering techniques—DMAIC, SPC, capability analysis, and design of experiments—with modern machine-learning and AI tools, all reinforced through hands-on software labs and industry-inspired projects. ## **Course Learning Outcomes:** Upon successful completion of this course, students will be able to: - 1. **Explain** key principles and concepts underlying statistical, machine learning, and Al-based approaches to quality analytics. - 2. **Apply** DMAIC, SPC, and advanced ML/AI techniques to monitor, diagnose, and improve process and product performance. - 3. **Develop and validate** predictive and prescriptive models—including those based on DOE and AI— to drive quality improvement initiatives. - 4. **Communicate** data-driven, ethically sound recommendations to support and sustain continuous improvement within organizations. #### **Assessments:** | Assessment Task | Contribution to Overall Course grade (%) | | |--------------------------------------|--|--| | Exercise, Quiz & Participation | 20% | | | Project & special topic presentation | 25% | | | Midterm Exam | 25% | | | Final Exam | 30% | | # **Required Texts and Materials** Statistical Quality Control: A Modern Introduction, 8th Edition, by Douglas Montgomery (2019), New York: Wiley. # **Course Outline** | Date | Topic | Reading | Video | In-Class Ex. | |---------|--|---------|-------|--| | Week 1 | □ Introduction to Quality Engineering | Chap 1 | | Intro Lecture | | Week 2 | The DMAIC processDefine Phase: Define a project | Chap 2 | Y | Case study | | Week 3 | Modeling process quality Discrete distributions Continuous distributions | Chap 3 | Y | DMAIC
game;
Project
demo. | | Week 4 | Inferences about process quality Sampling distributions and statistical inference P-values and inferences for one and two samples ANOVA Linear regression (optional) | Chap 4 | Y | M&M
statistics
activity | | Week 5 | Measure Phase: Process and measurement system capability analysis Process capability analysis Measurement system analysis | Chap 8 | Y | Water cup
GR&R
exercise | | Week 6 | Analyze Phase: Introduction to SPC SPC The rest of the Magnificent Seven | Chap 5 | Y | Discussion
on AI-
empowered
DMA; Project
guideline | | Week 7 | Project proposal reviewMidterm Review | | | Project
proposal
presentation;
Midterm
review | | Week 8 | Midterm Exam | | | | | Week 9 | Improve Phase: Introduction to DOE 1. Factorial experiments 2. 2k factorial design Fractional design (optional) | Chap 13 | Y | Paper
helicopter
DOE | | Week 10 | Control Phase: Control Charts for Variables Control charts for X-bar and R Control charts for X-bar and s | Chap 6 | Y | Quincunx
board
exercise | | Week 11 | Control Charts for Attributes Control charts for fraction nonconforming Control charts for nonconformities (defects) | Chap 7 | Y | Sampling
bowl
exercise | | Week 12 | Presentation of Special Topic - Generative
Al/LLM for Industrial
Analytics and Problem
Solving | Special topic presentation | |---------|---|---| | Week 13 | Group Project presentations | Group
project
presentation;
Final exam
review | # Presentation of Special Topic - Generative AI/LLM for Industrial Analytics and Problem Solving Sample topics: - Al-Generated Content (AIGC)/LLM in Industrial Applications (e.g., quality and reliability) - Introduction to AIGC /LLM and its role in industrial problem-solving - Natural language processing for analyzing unstructured data - Data visualization and reporting with AI - Real-world applications and case studies # **Group Project Presentation** - Students will submit/present their group project, which involves selecting, defining, analyzing, and proposing solutions to a real-world industrial problem using the DMAIC methodology, machine learning, deep learning, and AIGC tools.