The Hong Kong University of Science and Technology

IEDA3270 Data-Driven Quality Technology

Data-Driven Quality Technology

IEDA3270

3 Credits

Prerequisites: Basic knowledge of statistics, data analysis, and engineering principles.

Name: Fugee Tsung

Email: season@ust.hk

Course Description

IEDA3270 **Data-Driven Quality Technology** equips students to monitor, diagnose, and improve product or service quality by integrating classical quality-engineering techniques—DMAIC, SPC, capability analysis, and design of experiments—with modern machine-learning and AI tools, all reinforced through hands-on software labs and industry-inspired projects.

Course Learning Outcomes:

Upon successful completion of this course, students will be able to:

- 1. **Explain** key principles and concepts underlying statistical, machine learning, and Al-based approaches to quality analytics.
- 2. **Apply** DMAIC, SPC, and advanced ML/AI techniques to monitor, diagnose, and improve process and product performance.
- 3. **Develop and validate** predictive and prescriptive models—including those based on DOE and AI— to drive quality improvement initiatives.
- 4. **Communicate** data-driven, ethically sound recommendations to support and sustain continuous improvement within organizations.

Assessments:

Assessment Task	Contribution to Overall Course grade (%)	
Exercise, Quiz & Participation	20%	
Project & special topic presentation	25%	
Midterm Exam	25%	
Final Exam	30%	

Required Texts and Materials

Statistical Quality Control: A Modern Introduction, 8th Edition, by Douglas Montgomery (2019), New York: Wiley.

Course Outline

Date	Topic	Reading	Video	In-Class Ex.
Week 1	□ Introduction to Quality Engineering	Chap 1		Intro Lecture
Week 2	The DMAIC processDefine Phase: Define a project	Chap 2	Y	Case study
Week 3	 Modeling process quality Discrete distributions Continuous distributions 	Chap 3	Y	DMAIC game; Project demo.
Week 4	 Inferences about process quality Sampling distributions and statistical inference P-values and inferences for one and two samples ANOVA Linear regression (optional) 	Chap 4	Y	M&M statistics activity
Week 5	 Measure Phase: Process and measurement system capability analysis Process capability analysis Measurement system analysis 	Chap 8	Y	Water cup GR&R exercise
Week 6	 Analyze Phase: Introduction to SPC SPC The rest of the Magnificent Seven 	Chap 5	Y	Discussion on AI- empowered DMA; Project guideline
Week 7	Project proposal reviewMidterm Review			Project proposal presentation; Midterm review
Week 8	Midterm Exam			
Week 9	 Improve Phase: Introduction to DOE 1. Factorial experiments 2. 2k factorial design Fractional design (optional) 	Chap 13	Y	Paper helicopter DOE
Week 10	 Control Phase: Control Charts for Variables Control charts for X-bar and R Control charts for X-bar and s 	Chap 6	Y	Quincunx board exercise
Week 11	 Control Charts for Attributes Control charts for fraction nonconforming Control charts for nonconformities (defects) 	Chap 7	Y	Sampling bowl exercise

Week 12	Presentation of Special Topic - Generative Al/LLM for Industrial Analytics and Problem Solving	Special topic presentation
Week 13	Group Project presentations	Group project presentation; Final exam review

Presentation of Special Topic - Generative AI/LLM for Industrial Analytics and Problem Solving Sample topics:

- Al-Generated Content (AIGC)/LLM in Industrial Applications (e.g., quality and reliability)
- Introduction to AIGC /LLM and its role in industrial problem-solving
- Natural language processing for analyzing unstructured data
- Data visualization and reporting with AI
- Real-world applications and case studies

Group Project Presentation

- Students will submit/present their group project, which involves selecting, defining, analyzing, and proposing solutions to a real-world industrial problem using the DMAIC methodology, machine learning, deep learning, and AIGC tools.