The Hong Kong University of Science and Technology UG Course Syllabus (Fall 2025-26)

[Course Title] Deep Learning in Computer Vision

[Course Code] COMP 4471

[No. of Credits] 3-credit

[Any pre-/co-requisites] COMP 1023 OR COMP 2011 OR COMP 2012 OR COMP 2012H) AND (MATH 2111 OR MATH 2121 OR MATH 2131 OR MATH 2350

Name: CHEN, Qifeng

Email: cqf@cse.ust.hk

Course Description

Deep learning has significantly advanced the performance of computer vision systems from object recognition to image generation. This course covers the basics and various applications of deep learning in computer vision. Students will study the details of convolutional neural networks as well as recurrent neural networks and train deep networks with end-to-end optimization and learn deep learning approaches for both recognition and generation computer vision tasks such as image recognition and image generation. Through programming projects, students will implement, train, and test deep neural networks on cutting-edge computer vision research. Students would be required to study or do research in a final course project related to deep learning and computer vision and present their work by the end of the course.

List of Topics

Topic	Title	
1	Course introduction Computer vision overview Historical context Course logistics	
2	Image classification Data-driven approach K-nearest neighbor Linear classification I	
3	Loss function and optimization Linear classification II Higher-level representations, image features Optimization, stochastic gradient descent	

4	Introduction to neural networks Backpropagation Multi-layer Perceptrons The neural viewpoint
5	Convolutional neural networks History Convolution and pooling ConvNets outside vision
6	Training neural networks, part I Activation functions, initialization, dropout, batch normalization
7	Training neural networks, part II Update rules, ensembles, data augmentation, transfer learning
8	Deep learning hardware & software Caffe, Torch, Theano, TensorFlow, Keras, PyTorch, etc
9	CNN architectures AlexNet, VGG, GoogLeNet, ResNet, etc
10	Recurrent neural networks RNN, LSTM, GRU Language modeling Image captioning, visual question answering Soft attention
11	Detection and segmentation Semantic segmentation Object detection Instance segmentation
12	Visualizing and understanding Feature visualization and inversion Adversarial examples Style transfer
13	Generative models PixelRNN/CNN Variational Autoencoders Generative Adversarial Networks Diffusion Models

14	Attention and Transformers
15	Video Models
16	Self-supervised Learning
17	Generative AI for Visual Content Generation
18	Deep 3D Vision
19	Denosing Diffusion Model
20	Deep Reinforcement Learning for Robots

Intended Learning Outcomes (ILOs)

By the end of this course, students should be able to:

- 1. Understand the basics of deep neural networks
- 2. Train deep neural networks on several computer vision tasks
- 3. Use deep learning as a tool to solve a research problem of their interests

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned using a curve. Detailed rubrics for each assignment are provided below, outlining the criteria used for evaluation.

Assessments:

Assessment Task	Contribution to Overall Course grade (%)
3 Programming Assignments	36%
Midterm exam	35%
Final Project	29%
Total	100%

Mapping of Course ILOs to Assessment Tasks

Assessed Task	Mapped ILOs	Explanation
Assessed Task 1, 2, 3	ILO1, ILO2, ILO3	These task assesss students' ability to explain and apply deep learning

concepts (ILO 1, 2), evaluate their
applications (ILO 3)

Grading Rubrics

Available in the course web.

Final Grade Descriptors:

N/A

Course Al Policy

Al tools may be used for improving English and phrasing in reports, but otherwise not allowed in projects and exams.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated directly to students within two weeks of submission. Feedback on assignments will include specific details, e.g., strengths, areas for improvement. Students who have further questions about the feedback including marks should consult the instructor within five working days after the feedback is received.

Resubmission Policy

No resubmission.

Required Texts and Materials

<u>Textbooks</u>

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning, MIT Press, 2016.

Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola. Dive into Deep Learning. 2021

https://d2l.ai/

Academic Integrity

Students are expected to adhere to the university's academic integrity policy. Students are expected to uphold HKUST's Academic Honor Code and to maintain the highest standards of academic integrity. The University has zero tolerance of academic misconduct. Please refer to <u>Academic Integrity | HKUST – Academic Registry</u> for the University's definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

N/A