
The Hong Kong University of Science and Technology

UG Course Syllabus (Fall 2025-26)

[Course Title] Programming with C++

[Course Code] COMP 2011

[No. of Credits] 4-credits

[Any pre-/co-requisites] COMP 1021 OR COMP 1022P OR ISOM 3230

Exclusion: COMP 2012H

Name: PAPADOPOULOS Dimitris, OUYANG Xiaomin, CHEUNG Tsz Him, CHAN Gary, LI Cindy

Email: dipapado@cse.ust.hk, xmouyang@cse.ust.hk, thjcheung@cse.ust.hk, gchan@cse.ust.hk,

lixin@cse.ust.hk

Course Description

This course covers programming and data structures using C++. In addition to basic

programming concepts such as variables and control statements, students will learn about

arrays, pointers, dynamic data allocation, linked lists, stacks, queues, binary trees,

recursion, and the basics of object oriented programming. Prerequisite(s): COMP 1021 OR

COMP 1022P OR COMP 1022Q (prior to 2020-21) OR ISOM 3230. Exclusion(s): COMP

2012H.

List of Topics

1. Introduction to computer programming

2. C++ basics: basic syntax, data types, operators

3. Control flow

4. Functions

5. Array and structure

6. Recursion

7. Scope

8. Struct

9. Pointers

10. Dynamic Data

11. Class

12. Stack and Queue

13. File input / output

mailto:dipapado@cse.ust.hk
mailto:xmouyang@cse.ust.hk
mailto:thjcheung@cse.ust.hk
mailto:gchan@cse.ust.hk

Intended Learning Outcomes (ILOs):

On successful completion of the course, students will be able to:

1. Use common software tools to develop and debug a program written in an OOP

language.

2. Write a short program to solve a simple problem in an OOP language.

3. Demonstrate that recursive and non-recursive functions are abstractions of sub

 problems in a task.

4. Describe the concept and the use of pointers in indirect addressing and dynamic

 memory allocation.

5. Demonstrate the use of several data structures.

6. Implement an abstract data type by defining a class in an OOP language.

Assessment and Grading

This course will be assessed using criterion-referencing and grades will not be assigned

using a curve. Detailed rubrics for each assignment are provided below, outlining the

criteria used for evaluation.

Assessments:

Assessment Task
Contribution to Overall

Course grade (%)
Due date

Lab exercises 12% Weekly basis, 8 labs over the semester

Programming assignments 24% (8%, 8%, 8%) 20/10, 10/11, 29/11

Midterm 24% 25/10/2025

Final exam 40% 8-19/12/2025

 * Assessment marks for individual assessed tasks will be released within two weeks of

the due date.

Mapping of Course ILOs to Assessment Tasks

Assessed Task Mapped ILOs Explanation

Lab exercises ILO 1-6

The lab exercises assess the

students’ capability to use

software tools (ILO1), analyze

and write code (ILO2), and

exercise various specific

techniques such as recursion,

pointer manipulation, data

structures, and abstract data types

(ILO3-6).

Programming assignments ILO 1-6

Same as above, but with an

emphasis on developing larger

programs requiring more

advanced techniques and

combining different tools (ILO1-

6)

 Midterm and Final Exam ILO 2-6

The exams assess the students’

understanding of the course

concepts and capabilities to use

them to model small problems and

write code to provide solutions

(ILO2-6). Since the exams are in

written, we do not asses ILO1.

Grading Rubrics

Task

Assessment for

Learning

Outcome

Exemplary Competent Needs Work Unsatisfactory

Use common

software tools

to develop and

debug a

program

written in C++.

Use an IDE such

as VS Code

proficiently to

write, compile,

run, and debug a

C++ program

consisting of one

or many source

files.

Use an IDE

such as VS

Code

effectively to

write, compile,

run, and debug

a C++ program

consisting of

one or many

source files.

Use an IDE

such as VS

Code to write,

compile, and

run a C++

program

consisting of

one source file.

Have difficulty

in dealing with

programs

consisting of

more than one

source file as

well as

debugging.

Have difficulty in

using an IDE such as

VS Code to write,

compile, run, and

debug a C++ program

consisting of one

source file without

guidance.

Write and

analyze short

programs that

solve simple

problems in

C++.

Construct a

solution to a

written problem

by writing a

complete C++

program of no

more than 500

lines of codes on

one's own.

Construct a

solution to a

written

problem by

writing a

complete C++

program of no

more than 500

lines of codes

on one's own if

the

Require

assistance to

break down a

written

problem into

sub-problems

of sufficiently

small sizes

before being

able to

construct a

Is unable to construct

a solution to a written

problem by writing a

complete C++

program even under

guidance. Skeleton

code need to be given

which breaks down

the solution into a set

of small functions

with clear interface

requirements

are clearly

explained and

the required

programming

constructs are

told.

solution for

each sub-

problem with

no more than

100 lines of

codes. The

required

programming

constructs also

need to be told.

so that the student

may be able to

implement them.

Demonstrate

that recursive

and non-

recursive

functions are

abstractions of

sub-problems

in a task.

Demonstrate

thorough

understanding of

how recursion

works. Be able to

develop a

recursive

solution to a

written problem

on one's own,

and sometimes

contrast it with

the

corresponding

non-recursive

solution.

Demonstrate

sufficient

understanding

of how

recursion

works. Be able

to develop a

recursive

solution to a

written

problem if

given the

recursive

algorithm, and

sometimes

contrast it with

the

corresponding

non-recursive

solution.

Demonstrate

insufficient

understanding

of how

recursion

works. Be able

to develop

recursive

solutions only

to some simple

problems, and

only if the

recursive

algorithm is

given. Cannot

contrast the

recursive

solution with

the

corresponding

non-recursive

solution.

Is unable to

understand how

recursion works. Is

unable to develop

recursive solutions to

problems even if the

recursive algorithm is

given.

Understand

and

demonstrate

the use of

pointers in

indirect

addressing and

dynamic

memory

allocation.

Demonstrate

strong

understanding of

the concept of

pointers. Is able

to use pointers

effectively in

indirect

addressing and

dynamic

memory

allocation in a

great variety of

scenarios.

Demonstrate

sufficient

understanding

of the concept

of pointers. Is

able use

pointers

effectively in

indirect

addressing and

dynamic

memory

allocation in

standard

scenarios.

Demonstrate

marginal

understanding

of the concept

of pointers. Is

able to use

pointers in

indirect

addressing and

dynamic

memory

allocation only

in simple

scenarios.

Demonstrate little

understanding of the

concept of pointers.

Have great difficulty

inusing pointers in

indirect addressing

and dynamic memory

allocation even in

simple scenarios.

Understand

and

demonstrate

the use of

various data

structures.

Is able to choose

the appropriate

data structures

such as linked

lists, stacks and

queues to solve

problems, and

implement the

solution in C++

on one's own.

Is able to use

the required

data structures

such as linked

lists, stacks and

queues to solve

problems, and

implement the

solution in C++

on one's own.

Is able to use

the required

data structures

such as linked

lists, stacks and

queues to solve

simple

problems, and

implement the

solution in C++

with guidance.

Demonstrate little

understanding of data

structures such as

linked lists, stacks

and queues, and is

unable to use them to

solve problems even

with guidance.

Implement an

abstract data

type (ADT) by

defining a class

in C++.

Given the

description of a

simple ADT, is

able to

implement it

with a complete

C++ class

definition that

includes

appropriate class

members and

class member

functions. Is able

to write

programs that

create and

manipulate ADT

objects.

Given the

description of a

simple ADT,

able to

implement it

with a complete

C++ class

definition when

its class

members and

class member

functions are

also hinted. Is

able to write

programs that

create and

manipulate

ADT objects.

Given the

description of

the C++ class

definition of a

simple ADT,

including its

class members

and class

member

functions, is

able to

implement the

member

functions.

Sometimes is

able to write

programs that

create and

manipulate

ADT objects.

Have great difficulty

in understanding the

link between a simple

ADT and its C++

definition. Is unable

to complete C++

definition for simple

ADTs and to program

with C++ classes.

Final Grade Descriptors:

Grades Short Description Elaboration on subject grading description

A Excellent Performance

This student excels in C++ programming, expertly using

IDEs to write, debug, and manage code while

independently solving problems with well-structured

programs under 500 lines. They demonstrate mastery of

recursion, pointers, and dynamic memory allocation,

applying them effectively in diverse scenarios, and can

skillfully implement data structures like linked lists, stacks,

and queues. Additionally, they can design robust C++

classes for abstract data types (ADTs) and manipulate

objects with precision.

B Good Performance
This student demonstrates solid C++ skills, competently

using IDEs to develop and debug programs while solving

well-defined problems (under 500 lines) when given clear

requirements. They understand recursion, pointers, and

dynamic memory allocation well enough to apply them in

standard scenarios, and can implement basic data structures

like linked lists, stacks, and queues independently. With

some guidance, they can also design simple ADTs as C++

classes and manipulate objects effectively.

C
Satisfactory

Performance

This student has achieved satisfactory proficiency in

foundational C++ programming, capably writing and

running single-file programs in VS Code while beginning

to explore multi-file projects with some guidance. They can

break down and solve well-defined problems (under 100

lines) when given structural support, demonstrating

growing competence with core programming constructs.

While their understanding of recursion, pointers, and data

structures is not fully developed, they can apply these

notions. With continued effort, they are well-positioned to

solidify these skills for more complex tasks.

D Marginal Pass

This student shows minimal C++ proficiency, (e.g.,

handling only basic single-file programs and requiring

extensive help with multi-file projects or debugging). They

solve small problems (under 100 lines) when given step-

by-step guidance and pre-divided tasks. Their grasp of

advanced notion is weak, often misapplying concepts, and

they depend heavily on examples. With significant effort

and using this course as a basis, the student can strengthen

their skills.

F Fail

This student has failed to demonstrate basic C++

programming competency. They cannot independently

write, compile, or debug simple programs, requiring

extensive step-by-step guidance for every task.

Fundamental programming concepts are not understood,

and they are unable to solve problems or implement

solutions even with significant support. Their performance

shows no evidence of meeting the course's minimum

learning objectives.

Course AI Policy

Generative artificial intelligence tools like ChatGPT or similar software are not allowed

for labs and programming assignments. This has been clearly communicated to the

students. The rational behind this is that this course teaches fundamental coding techniques

in C++ and students need to learn and apply correct programming techniques, syntax, and

development; relying on generative AI tools can hamper this, at their current level of

programming understanding.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within

two weeks of submission. Feedback on assignments will include detailed grading, and

itemized marks deduction. We also provide template solutions to offer students the chance

to improve their skills and correct their errors. Students who have further questions about

the feedback including marks should consult the grader and instructor within a few

working days after the feedback is received.

Resubmission Policy

No resubmission of assessment tasks allowed.

Textbooks

Big C++: Late Objects, 3rd Edition

Cay S. Horstmann eBook ISBN:

9781119402978

Reference books

N/A

Academic Integrity

Students are expected to adhere to the university’s academic integrity policy. Students are

expected to uphold HKUST’s Academic Honor Code and to maintain the highest

standards of academic integrity. The University has zero tolerance of academic

misconduct. Please refer to Academic Integrity | HKUST – Academic Registry for the

University’s definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

N/A

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.wiley.com%2Fen-sg%2FBig%2BC%252B%252B%253A%2BLate%2BObjects%252C%2B3rd%2BEdition-p-9781119402978&data=04%7C01%7Clixin%40ust.hk%7Cc3527001dc304447b41e08d94684d503%7Cc917f3e2932249269bb3daca730413ca%7C1%7C0%7C637618358605209233%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=1ATcr8SIhvw%2BN9QINURBjmSE8QeiIjcDYb4jW3Gpsu8%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.wiley.com%2Fen-sg%2FBig%2BC%252B%252B%253A%2BLate%2BObjects%252C%2B3rd%2BEdition-p-9781119402978&data=04%7C01%7Clixin%40ust.hk%7Cc3527001dc304447b41e08d94684d503%7Cc917f3e2932249269bb3daca730413ca%7C1%7C0%7C637618358605209233%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=1ATcr8SIhvw%2BN9QINURBjmSE8QeiIjcDYb4jW3Gpsu8%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.wiley.com%2Fen-sg%2FBig%2BC%252B%252B%253A%2BLate%2BObjects%252C%2B3rd%2BEdition-p-9781119402978&data=04%7C01%7Clixin%40ust.hk%7Cc3527001dc304447b41e08d94684d503%7Cc917f3e2932249269bb3daca730413ca%7C1%7C0%7C637618358605209233%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=1ATcr8SIhvw%2BN9QINURBjmSE8QeiIjcDYb4jW3Gpsu8%3D&reserved=0
https://registry.hkust.edu.hk/resource-library/academic-integrity

