MECH4750 Mechanical Vibration

Course Code: MECH4750		Course Title: Mechanical Vibration	
Required Course Or Elective Course: elective		Terms Offered (Credits): Fall 23-24 (3 credits)	
Faculty In Charge: Zhengbao YANG		Pre/Co-Requisites: N/A	
Course Structure: Lecture: 2 days per week, 1.5 hours per lecture			
Textbook/Required Material: Lecture notes, Reference textbook: S.S. Rao, Mechanical Vibration, 5/e, Prentice Hall, 2011.			
Bulletin Course Description: Single-degree-of freedom	vibration, multip active control, Per materials, and str vibration fion n vibration heory 1. To equip vibration heory 2. To introc response 3. To provio vibration forced vi methods 4. To introc based on standard 5. To introc characte maintena	the students with fundamental vibration theories and control technologies that are commonly used in cal, civil, electrical, and aerospace engineering (P-O1) luce various damping mechanisms and frequency e function in mechanical systems (P-O3). de students with the skill of identification of system characteristics, the response of free vibration and bration, using analytical methods and numerical , especially finite element method (P-O1, P-O3) luce the design of various vibration control methods, specified vibration constraints and/or international s (P-O1, P-O3). luce experimental methods to determine vibration ristics for vibration control and condition-based ance in mechanical and aerospace engineering (P-O1, P-O3) control methods and aerospace engineering (P-O1, P-O3).	
) the cutting-edge knowledge on sensors and ers (P-O1, P- O2, P-O3)	
Course Outcomes: (correlated course objectives and program outcomes)		o derive system equations [1,3] (POC1). o modify, in a design scenario, the system parameters to	

	 alter vibration response [2,4,5] (POC1, POC3). C. Ability to determine natural frequencies and vibration shape(s) [3,5] (POC1, POC3). D. Ability to measure vibration characteristics and infer model parameters from the measured data [5] (POC1, POC2, POC3). E. Ability to apply modern computational techniques (i.e. Matlab and ANSYS to vibration analysis) [3] (POC3, POC6). F. Ability to design practical vibration control systems for mechanical systems in mechanical and aerospace engineering [4,5] (POC4, POC5, POC6) 	
Assessment Tools: (correlated course outcomes)	Quiz/Assignment 20% [A-F] Mid-term exam 40% [A-E] Course project 40% [A-E]	

BEng in Mechanical Engineering (4-year program) Program Objectives:

- P-O1. Be able to communicate and perform as an effective engineering professional in both individual and teambased project environments,
- P-O2. Have an international outlook with clear perspectives on the Pearl river Delta and Greater China,
- P-O3. Be able to research, design, develop, test, evaluate and implement engineering solutions to problems that are of complexity encountered in professional practice and leadership,
- P-O4. Clearly Consider the ethical implications and societal impacts of engineering solutions,
- P-O5. Continuously improve through lifelong learning.

Program Outcomes:

- POC1. ability to identify and formulate problems in multidisciplinary environment with an understanding of engineering issues and constraints;
- POC2. ability to design and conduct experiments as well as analyze and interpret data;
- POC3. ability to apply knowledge of mathematics, science, and engineering for problem solving in mechanical engineering and related sectors or for further education in a research career;
- POC4. ability to develop specification and to design system, component, or process to meet needs;
- POC5. ability to understand the manufacturability, maintainability, and recyclability of engineering system and components;
- POC6. ability to use modern engineering tools, techniques, and skills in engineering practice;
- POC7. ability to communicate effectively;
- POC8. ability to function in multi-disciplinary teams and provide leadership;
- POC9. broadly educated with an understanding of the impact of engineering solutions on issues such as economics, business, politics, environment, health and safety, sustainability, and societal context;
- POC10. clear understanding of professional and ethical responsibilities;
- POC11. recognition of the need for life-long learning and continuing education;
- POC12. international outlook with knowledge of contemporary issues.