MECH3300 Energy Conversion

Course Code: MECH3300		Course Title: Energy Conversion	
Required Course Or Elective Course: elective		Terms Offered (Credits): Fall 2023-24 (3 credits)	
Faculty In Charge: Qiye ZHENG		Pre/Co-Requisites: MECH2310	
Course Structure: Lecture: 2 days per week, 1.5 hours; Tutorial: 1 day per week, 1 hour			
Textbook/Required Material:			
Thermodynamics-An Engineering Approach			
 Bulletin Course Description: To deepen the students' understanding of the thermodynamic principles and concepts that govern the energy conversion processes in various engineering applications To enable the students to analyze and evaluate the practical power and refrigeration cycles used in different energy conversion systems To develop the students' skills and creativity in understanding and improving the energy conversion systems that meet the desired performance and efficiency criteria while minimizing the environmental impact 			
Course Topics:1. Review of Thermodynamics2. Exergy3. Gas Power Cycles4. Jet Propulsion Cycle5. Thermodynamic property relations6. Vapor and Combined Power Cycles7. Refrigeration cycles8. Heat pumps and advanced cooling techniques9. Gas Mixtures10. Gas-vapor mixtures and air-conditioning			
Course Objectives: (correlated program objectives)	 To deep principle processe To enab power a converse To deve and imp desired the envi 	en the students' understanding of the thermodynamic es and concepts that govern the energy conversion es in various engineering applications (P-O1, P-O3) le the students to analyze and evaluate the practical nd refrigeration cycles used in different energy ion systems (P-O3, P-O5) lop the students' skills and creativity in understanding proving the energy conversion systems that meet the performance and efficiency criteria while minimizing ronmental impact (P-O1, P-O3, P-O5)	
Course Outcomes: (correlated course objectives and program outcomes)	 A. Explain and that can be specified severgy dest B. Select and different en across the mass flow. C. Apply and formulate 	d calculate the exergy or the maximum useful work be obtained from a given amount of energy at a tate, and identify the sources of irreversibility and cruction in energy conversion processes. (1) (POC1) define the appropriate control volume for analyzing nergy systems, and determine the energy interactions control volume boundary in terms of heat, work, and (1) (POC1, POC3) justify the assumptions and simplifications needed to the thermodynamic models of classical power and	

	 refrigeration cycles. (2, 3) (POC3) D. Solve and interpret the thermodynamic performance of various energy conversion systems using the mass, energy, and entropy balances, and evaluate the effects of design parameters and operating conditions on the system efficiency and environmental impact. (2, 3) (POC1, POC3)
Assessment Tools:	Homework – 30% (10x3%), 0-100
(correlated course	Midterm examination – 30%, 0-100
outcomes)	Final examination – 40%, 0-100

BEng in Mechanical Engineering (4-year program) Program Objectives:

- P-O1. Be able to communicate and perform as an effective engineering professional in both individual and team-based project environments,
- P-O2. Have an international outlook with clear perspectives on the Pearl river Delta and Greater China,
- P-O3. Be able to research, design, develop, test, evaluate and implement engineering solutions to problems that are of complexity encountered in professional practice and leadership,
- P-O4. Clearly Consider the ethical implications and societal impacts of engineering solutions,
- P-O5. Continuously improve through lifelong learning.

Program Outcomes:

- POC1. ability to identify and formulate problems in multidisciplinary environment with an understanding of engineering issues and constraints;
- POC2. ability to design and conduct experiments as well as analyze and interpret data;
- POC3. ability to apply knowledge of mathematics, science, and engineering for problem solving in mechanical engineering and related sectors or for further education in a research career;
- POC4. ability to develop specification and to design system, component, or process to meet needs;
- POC5. ability to understand the manufacturability, maintainability, and recyclability of engineering system and components;
- POC6. ability to use modern engineering tools, techniques, and skills in engineering practice;
- POC7. ability to communicate effectively;
- POC8. ability to function in multi-disciplinary teams and provide leadership;
- POC9. broadly educated with an understanding of the impact of engineering solutions on issues such as economics, business, politics, environment, health and safety, sustainability, and societal context;
- POC10. clear understanding of professional and ethical responsibilities;
- POC11. recognition of the need for life-long learning and continuing education;
- POC12. international outlook with knowledge of contemporary issues.