Course Code Course Title COMP 3511 Operating System # **Course Description** This is an introductory course on operating systems. The topics will include the basic concepts of operating systems, process and threads, inter-process communications, process synchronization, scheduling, memory allocation, page and segmentation, secondary storage, I/O systems, file systems, and protection. It contains the key concepts as well as examples drawn from a variety of real systems such as Microsoft Windows and Linux. Prerequisite(s): COMP 2611 OR [(ELEC 2300 OR ELEC 2350) AND (COMP 2011 OR COMP 2012H)] # **List of Topics** Chapter 1: Introduction Chapter 2: Operating System Structures Chapter 3: Processes Chapter 4: Threads and Concurrency Chapter 5: CPU Scheduling Chapter 6: Synchronization tools Chapter 7: Synchronization examples Chapter 8: Deadlocks Chapter 9: Memory Management Strategies Chapter 10: Virtual-Memory Management Chapter 11: Mass Storage Systems Chapter 12: I/O Systems Chapter 13: File-System Interface Chapter 14: File-System Implementation Chapter 17: Protection ### Textbooks Operating System Concepts, 10th Edition Abraham Silberschatz, Peter B. Galvin, Greg Gagne John Wiley & Sons Ltd, April 2018 ISBN: 978-1-118-09375-7 #### Reference books Operating Systems: Three Easy Pieces Remzi Arpaci-Dusseau & Andrea Arpaci-Dusseau ISBN: 978-1-985-08659-3 # **Grading Scheme** | Midterm Exam | 20% | |--------------|-----| | Final Exam | 30% | | Homework | 20% | | Project | 30% | ## Course Intended Learning Outcomes - Describe what is an operating system and the role it plays. Recognize different types of operating systems and know the basic architecture of an operating system. - Understand the concepts related to processes and threads, including their creation, communication and scheduling. Identify and address deadlock, and can design algorithmic solutions to synchronization problems. - Explain how main memory and virtual memory are managed. Master algorithms involved in memory allocation and page replacement. - Know about the concepts and implementations of file systems. Comprehend the technologies like disk operations and RAID in mass-storage systems. ## Assessment Rubrics | Course Learning Outcome | Exemplary (A- to A+) | Competent (C to B+) | Needs Work (D to C-) | Unsatisfied (F) | |--|---|---|---|---| | Describe what is an operating
system and the role it plays.
Recognize different types of
operating systems and know the
basic architecture of an operating
system. | Demonstrates thorough
understanding of operating
system and its roles. Is able to
accurately identify various
operating systems. Can design a
simple operating system
independently. | Demonstrates sufficient
understanding of operating
system and its roles. Is able to
identify multiple operating
systems. Can design a simple
operating system with
instructions. | Demonstrates some
preliminary understanding of
operating system and its roles.
Is able to identify only several
operating systems. Only can
design a simple operating
system partially. | Demonstrates deficient
understanding of operating
system and its roles. Is not ab
to distinguish between
different operating systems.
Not able to design a simple
operating system. | | Understand the concepts related to processes and threads, including their creation, communication and scheduling, identify and address deadlock, and can design algorithmic solutions to synchronization problems. | Demonstrates thorough
understanding of processes and
threads. Can accurately identify
and address complex deadlock
problems, and can design
algorithmic solutions to
sophisticated synchronization
problems. | Demonstrates sufficient
understanding of processes
and threads. Can identify and
address most deadlock
problems, and can design
algorithmic solutions to most
synchronization problems. | Demonstrates basic
understanding of processes
and threads. Can identify and
address some deadlock
problems, and can design
algorithmic solutions to some
synchronization problems. | Demonstrates deficient
knowledge of processes and
threads. Can not identify and
address deadlock problems,
and can hardly design
algorithmic solutions to any
synchronization problems. | | Explain how main memory and
virtual memory are managed.
Master algorithms involved in
memory allocation and page
replacement. | Demonstrates ability to fully explain how main memory and virtual memory are managed. Masters all the algorithms involved in memory allocation and page replacement. | Demonstrates sufficient ability
to explain how main memory
and virtual memory are
managed. Masters most
algorithms involved in memory
allocation and page
replacement. | Demonstrates preliminary
understanding of how main
memory and virtual memory
are managed. Knows some
algorithms involved in memory
allocation and page
replacement. | Not understand how main
memory and virtual memory
are managed. Knows few
algorithms involved in memo
allocation and page
replacement. | | Know about the concepts and
implementations of file systems.
Comprehend the technologies
like disk operations and RAID in
mass-storage systems. | Demonstrates strong
understanding of the concepts
and implementations of file
systems. Deeply comprehends
the technologies in mass-storage
systems. | Demonstrates sufficient understanding of the concepts and implementations of file systems. Comprehends most of the technologies in massstorage systems. | Demonstrates preliminary understanding of the concepts and implementations of file systems. Comprehends part of the technologies in mass-storage systems. | Has very limited understandi
of the influence of the usage
the concepts and
implementations of file
systems. Knows little about t
technologies in mass-storage
systems. |