Rubric	CIVL4610
Title of course	Introduction to data analytics for smart transportation systems
Instructor	Sisi Jian
Course catalog	This course covers the role of stochasticity in transport systems and
description,	the methods used to account for this within transport infrastructure
prerequisites, and	assessment, with a particular focus on the application of data analysis
credit	methods. The course introduces how to analyze the performance of
	public transport systems and road network using classic queuing
	theory and travel time reliability concepts. The course will
	complement skills learnt in the other transport courses to provide a
	well-rounded knowledge of smart transport planning and management.
	The focus is on the application of transport models in real world
	settings using real data. Students have the opportunity to work with
	large open-source data in two experiential-learning projects. The
	course also develops skills for working with data and managing
	collaborative projects.
	Prerequisite: COMP1021/ COMP1022P/ COMP2011/ COM2012H
	Credit: 3
Tarthook(s) and/or	Crean: 5 Reference books:
other required	Reference books. • Roess Roger P. Flana S. Prassas William R. McShana Traffic
material	Engineering Third Edition Upper Saddle River: Pearson Prentice
maicriai	Hall 2004 (ISBN 0-13-142471-8)
	• Vukan Vuchic, Urban Transit Operations, Planning and Economics –
	John Wiley & Sons 2005
	• Daganzo, C. Fundamentals of Transportation and Traffic Operations
	Pergamon-Elsevier.Oxford. U.K. (1997)
	• de Neufville, Richard, "Applied Systems Analysis - Engineering
	Planning and Technology Management", McGraw Hill, 1990.
	• Hall, W. Randolph. "Queueing Methods - For Services and
	Manufacturing", Prentice Hall, 1991.
	• Ravindran, A., Phillips, Don T. and Solberg, James J. "Operations
	Research - Principles and Practice", John Wiley and Sons, 1987.
Course objectives	This course will enable students to:
-	1. Comprehend and apply the theoretical knowledge to solve real-
	world transportation problems.
	2. Learn how to use Python to clean, process, analyze and visualize
	transportation "big data".
	3. Develop the skills of research question formulation and project
	management.
Topics	This course will cover the following topics:
	1. Advanced queuing theory
	2. Discussion of common queuing models
	3. Application of queuing models in public transport
	4. Introduction to travel time reliability in road network
	6. Data analysis approaches which feed into queuing models and road
	network performance models
	7. Application of data mining techniques in smart transportation
	planning
Computer usage	Python
Laboratory projects	N.A.

Class/laboratory	Lecture: 3 hours/week, Lab tutorial: 1 hour/week
schedule	
Contribution to the	100% engineering topics
professional	
component	
Relationship to	This course contributes to the following program objectives:
program objectives	POE2 Train students with good communication skills so they can
	work effectively in large projects involving different parties and
	professionals.
	Students will work in a team in the group project and learn how to
	manage a project from proposing a research question to presenting the
	project results.
	POE4 Expose students to real world engineering projects as well
	as cutting edge research to improve their understanding of the
	profession and technological advancements that can improve
	current practice.
	Students will work on realistic transportation "big data" and identify
	real-world research questions they are interested to solve.
Relationship to	This course contributes to the following program learning outcomes:
program outcomes	1. Obtain fundamental knowledge in mathematics and science
	Students will learn the fundamental knowledge of queuing theory and
	reliability, as well as stochastic characteristics of transport systems.
	4. Apply modern engineering tools
	Students will learn how to work with large open-source data in Python,
	and learn how to use visualization tools and data mining techniques.
	5. Formulate problems and propose feasible solutions
	Students will learn how to design a research question, methodology
	and data approach for a real problem. Students will apply project
	design and data analysis methods to real problems with real data.
	Students will learn in denth knowledge in guoving theory and
	students will learn in-depth knowledge in queung theory and
	Communicate ideas officially and able to work in teams
	5. Communicate ideas effectively and able to work in teams
	on a group project. Students will also present their work in a poster
	showcase in the last week
	12 Stoy abroast of contemporary issues
	This course focuses on the application of transport models in real
	world settings. Students will work on real data obtained from either
	government website or ADIs, and utilize transport models to evaluate
	existing public transport and road network performance, identify
	current issues and propose transport policy implications
Assassment of	50% individual assignment (Outcomes 1.4.5.8.12) + 50% group
assessment Of	project (Outcomes $4.5.8, 9.12$)
Drangred by	Sisi Jian
Treparea by	
Date	August 18, 2023