ENVR/CIVL 4470 Air Quality Control and Management (3 credits)

Fall 2023

1. GENERAL INFORMATION

Instructor: Prof. Zhe WANG Email: z.wang@ust.hk

Date and Time: Mon Wed 9:00AM - 10:20AM

Room: Rm 2503, Lift 25-26

2. COURSE DESCRIPTION

Historical and health impact studies related to air pollution. Atmospheric stability and its impact on the transport and dispersion of pollutants. Sources of major air pollutants. Comparison of urban, industrial and transport related air pollution issues, using Hong Kong and Pearl River Delta as examples. Control of stationary and mobile emission sources. Air quality management - framework, policy tools and comparison of different approaches.

3. COURSE OBJECTIVES

This course is designed to provide solid foundation of the science, engineering, and basic issues associated air pollution control and air quality management, aiming to: (1) identify and describe the main sources of emissions that lead to urban air pollution; (2) compare and contrast the most common methods for effectively preventing or controlling emissions of air pollution; (3) understand the key issues in connecting science to policy formulation; (4) discuss and evaluate options and strategies for management of air quality; (5) discuss and identify opportunities in addressing air pollution problem with smart city technologies.

4. TENTATIVE COURSE SCHEDULE			
Week	Topics	Briefly outline what this topic will cover	
1	Nature of Atmospheric	History and health impact of Air Pollution	
	Pollution	Major air pollutants in the atmosphere	
2	Fundamentals knowledge	Physical and Chemicals	
	of Air Pollution	Concentration Units	
		Unit conversion	
3	Air Quality Management	Air quality management framework	
	strategies	Different management philosophies	
		Air quality standards	
		Air quality index	
4	Air Quality monitoring and	Monitoring principles	
	measurement techniques	Measurement techniques	
5.	Air Pollution Emission	Energy Use and Combustion	
		Emission Sources of Air Pollutants	
	A: 5 !! .: 1	Emission Inventory and Emission Factors	
6.	Air Pollution Meteorology	Structure and stability of the atmosphere	
	A: 0 1: 1 1 1	Mixing, dispersion and transport of air pollutants	
7.	Air Quality Models	Box models	
		Gaussian models	
		3-D gridded models	
	A: 5 !! !! 6 ! !	Receptor models	
8.	Air Pollution Control Strategies	General considerations in air pollution control	
9.	Air Pollution Control	Nature of particulate pollutants	
	Technology (1)	Behavior of particles in the atmosphere	
		Control of particulates	

10.	Air Pollution Control Technology (2)	Control of Sulfur Oxides
11	Air Pollution Control Technology (3)	Photochemical air pollution Control of NOx and VOCs
12	Indoor Air Pollution and Exposure	Indoor air quality Exposure assessment
13	New advances and opportunities	 Crisis and challenges in modern cities Emerging advances in technologies New directions in air quality management Air Quality and Global Climate

5. REFERENCES/READING MATERIALS

Primary Reference:

- Noel De Nevers (2000) Air Pollution Control Engineering. McGraw-Hill International Editions
- 2. NRC 2012 Exposure Science in the 21st Century: A Vision and Strategy

Secondary Reference:

- 3. Mark Z. Jacobson (2002) Atmospheric Pollution, History, Science and Regulation. Cambridge University Press.
- 4. World Health Organization (https://www.who.int/)
- 5. Hong Kong Environmental Protection Department (http://www.epd.gov.hk)
- 6. EPA 1992 Guidelines for Exposure Assessment Excerpts

6. Assessment

Homework 25%

In-class discussion and activity 5%

Group Project 10%

Mid-term (open book) 20%

Final Exam (open book) 40%