Hong Kong University of Science and Technology Department of Civil and Environmental Engineering

"The dwarf sees further than the giant when he has the giant's shoulder to mount on." *Isaac Newton*

Rubric	CIVL 3730		
Title of course	Fundamentals of Geotechnics		
Instructor	Prof. Wang Yu-Hsing (Office: 3572, Phone: 8757, Email: <u>ceyhwang@ust.hk</u>) and		
Teaching Assistant	Prof. Chow Jun Kang (Email: junkangchow@ust.hk)		
	TBA		
Prerequisites	CIVL 2120 (Mechanics of Materials)		
Credit	3		
Textbook(s) and/or	Required textbook:		
Other materials	Muni Budhu (2011). Soil Mechanics and foundations, 3rd eds., John Wiley & Sons.		
	(e version)		
	Muni Budhu (2018). Soil mechanics fundamentals, Chichester, West Sussex, United		
	Kingdom: Wiley Blackwell (e version)		
	Reference textbooks:		
	[1] Das, B.M., Sobhan, K. (2014). Principles of Geotechnical Engineering, 8th		
	Edition, Stamford, CT: Cengage Learning. (or other editions, 2019 version is not available)		
	[2] Holtz, R.D. and Kovacs, W.D. (1981). An Introduction to Geotechnical		
	Engineering, Prentice Hall.		
	[3] Holtz, R.D., Kovacs, W.D., and Sheahan, T.C. (2011). An introduction to		
	Geotechnical Engineering. 2nd edition, Pearson.		
	[4] Lambe, T.W. and Whitman, R.V. (1979). Soil Mechanics, SI Version, John		
	Wiley & Sons.		
	[5] Knappett, J.A. and Craig, R. F. (2012). Craig's Soil Mechanics, 8th Edition,		
	Spon Press, London (e version).		
	[6] Craig, R.F. (2004). Craig's Soil Mechanics: the solutions manual, Spon		
	Press, London (e version).		
	References for the laboratory section:		
	[1] ASTM Standard (Database room)		
	[2] British Standard (Database room)		
	[3] Eurocode 7: Geotechnical design		
	[4] Geoguide (GEO HK)		
	http://www.cedd.gov.hk/eng/publications/geo/geo_geoguide.html		
	[5] Head, K.H. (2006). Manual of Soil Laboratory Testing, 3rd Edition, CRC		
	Press. (e version)		

	[6] Head, K.H. Epps R. J. (2014). Manual of Soil Laboratory Testing, 3rd Edition, Whittles Publishing. (e version) There are three volumes in total
	Class website: Canvas (Online Virtual Soil Lab.)
Course Objectives	This course will enable students to understand geotechnical mechanics and associated soil behavior, including basic engineering geology, characteristics of soils, soil compaction, the principle of effective stress, shear strength of soils, the concept of critical state modeling, permeability, seepage problems, ground settlement and consolidation.
Topics	 Basic engineering geology and rock mechanics (including soil formation and clay minerals) Characteristics of soils (including phase relationships, index properties of soils, and soil classifications) Soil compaction Stresses and strains of soils The principle of effective stress. Shear strength of soils (including field testing). A critical state model to interpret soil behavior. One-dimensional flow of water through soils (permeability). Two-dimensional flow of water through soils (seepage). One-dimensional consolidation settlement of fine-grained soils (consolidation).
Computer usage	To be advised by the lecturers
Lab Projects	Five lab sessions Lab 1: Atterberg's limits test Lab 2: Compaction test Lab 3: Direct shear test Lab 4: Constant head and falling head permeability test Lab 5: One-dimensional consolidation test; Grain size distribution test (sieve analyses)
Class/lab schedule	Two 80-minute lectures (every week); 50-minute tutorial (for ~7 times); five 3-hour lab sessions
Contribution to the professional component	100% Engineering topics
Intended Learning Outcomes (ILOs) of this course	 Able to identify, formulate, and solve problems related to geotechnical engineering. Able to conduct experiments, analyze and interpret results for geotechnical engineering design. Able to apply modern engineering tools effectively and efficiently to perform

	geotechnical engineering analysis.		
	4. Have the basic knowledge to carry out technically competent geotechnical		
	engineering-related design.		
Relationship to the	This course contributes to the (1) through (4) program objectives as follows:		
program objective	(1) Provide students with professional skills in the design, construction and		
program objective			
	management of the civil infrastructure. This course provides students with in denth knowledge of gootschnicel		
	This course provides students with in-depth knowledge of geotechnical		
	engineering.		
	(4) Expose students to real world engineering projects as well as cutting edge		
	research to improve their understanding of the profession and technological		
	advancements that can improve current practice		
	This course helps students realize the considerations, limitations and challenges		
	related to the current design practice in Geotechnical Engineering.		
Relationship to	This course contributes to the (1) through (12) program outcomes as follows:		
program outcome	(1) Acquire fundamental knowledge in mathematics and science on which civil		
	engineering research and practice are based.		
	(2) Understand fundamental principles of engineering science relevant to civil		
	engineering disciplines		
	(5) Develop an ability to identify and formulate civil engineering problems, and		
	propose feasible solutions with an appreciation of their underlying		
	assumptions, uncertainties, constraints, and technical limitations		
	Students will learn basic engineering geology and principles of soil mechanics		
	from this course; therefore, students should be able to understand, formulate,		
	and solve problems related to geotechnical engineering.		
	(3) Acquire an ability to conduct experiments, analyze and interpret results, and		
	appreciate the importance of experimental data in establishing empirical		
	relationships and parameters for analysis and design		
	Students have to attend five different laboratory sessions and submit lab reports		
	for each experiment in this course; therefore, students should be able to conduct		
	experiments, analyze and interpret results for geotechnical engineering design.		
	(4) Acquire an ability to apply modern engineering tools and IT tools effectively		
	and efficiently for engineering analysis, design and communication		
	Students have to do seven assignments and prepare five laboratory reports in		
	this course; therefore, students should have the ability to apply modern		
	engineering tools and IT tools for geotechnical engineering related analyses.		
	(6) Develop technical competency to design civil engineering components and		
	systems, with an understanding of the principles behind the design		
	methodologies.		
	(8) Obtain in-depth knowledge in at least one major area of specialization within		
	civil engineering		

	studer geoteo	its understand the princ chnical engineering. The cal competency for geotec	knowledge of soil mechanics, which helps iples behind the design methodologies of refore, student should be able to develop hnical engineering related design in the end of		
Assessment of	The learnin	g outcomes listed above a	re assessed via seven graded assignments, five		
Outcomes		laboratory reports, and mid-term and final exams.			
	_	-	5 %		
	La	b Report: 15	% (group report) (2-week due)		
	Μ	id-term: 30	% (around the 7 th or 8 th week)		
	Fi	nal exam 40	%, TBA		
	Details of a	ssessment of each outcome	is summarized in the table below:		
	Course	ssessment of each outcome	is summarized in the table below: Assessment		
	Course ILOs	Learning activity	Assessment Assignment; midterm and final		
	Course ILOs I	Learning activity Lecture, tutorial	Assessment Assignment; midterm and final exams Lab report; midterm and final		
	Course ILOs I	Learning activity Lecture, tutorial Lecture, Lab	Assessment Assignment; midterm and final exams Lab report; midterm and final exams Lab report; assignment; midterm		
Prepared by	Course ILOs I II II	Learning activityLecture, tutorialLecture, LabLecture, Lab, tutorialLecture, Lab, tutorial	Assessment Assignment; midterm and final exams Lab report; midterm and final exams Lab report; assignment; midterm and final exams Lab report; assignment; midterm		