The Hong Kong University of Science and Technology Department of Civil and Environmental Engineering

Course code	CIVL 2160
Course title	Modeling Systems with Uncertainties
Instructors	Anthony Kwan LEUNG, Jize ZHANG
Prerequisites	None
Credit	3
Textbook(s) and/or	Probability Concepts in Engineering, Emphasis on Applications to Civil and
other materials	Environmental Engineering, 2 nd Ed., by Ang and Tang, published by John
	Wiley & Sons, Inc.
Course Objectives	1. Provide students with fundamental knowledge in uncertainty, probability
, i i i i i i i i i i i i i i i i i i i	and statistics
	2. Identification and modeling of non-deterministic problems in civil
	engineering, and the treatment thereof as related to engineering design and
	decision making
	3. Development of stochastic concepts and probability models, and their
	relevance to design and decision problems in various areas of civil
	engineering
	4. Introduction to engineering problem solving involving inherent
	uncertainties via probabilistic modelling and statistical tools
	5. Provide students with basic simulation skills to solve realistic engineering
	problems effectively
Topics	• Types and sources of uncertainty in engineering
	Fundamentals of probability models
	Random variables and probability distributions
	Analytical models of random phenomenon
	Choice of probability models
	Multiple random variables and joint probability distribution
	• The Central Limit Theorem
	• Point estimation, confidence intervals and hypothesis testing
	Regression and correlation analysis
	• Least squares methods
	Software tools for rapid statistical computations
Computer usage	Computational software toolboxes allowed in second part of course
Lab Projects	No lab work required
Class/lab schedule	Two 80-minute lectures per week
Contribution to the	40% understanding fundamentals of probabilistic and statistics topics
professional	40% modelling and solving probability-related problems in civil engineering
component	20% mastering / utilizing numerical methods and tools to solve problems
Relationship to	1. Provide probability and statistical skills in civil engineering design,
program objectives	construction and management
1 0 5	This course conveys statistics and probability knowledge which can be used to
	address uncertainties in engineering design, construction and management.
	2. Stimulate self-learning through open-ended problems
	The course provides some basic knowledge in computer simulation and the use
	of computing software toolboxes, which are utilized to treat traditionally
	tedious problems efficiently and creatively on computers.
Relationship to	1. Obtain fundamental knowledge in mathematics and science
program outcomes	Students learn the fundamental theories of probability and statistics, and apply
	them in practical scenarios involving uncertainties in civil engineering
	systems.
	2. Acquire an ability to apply modern engineering and IT tools

Assessment of	 Students are taught to use state-of-the-art computing software toolboxes such as Python to automate tedious tasks such as matrix algebra, nonlinear equations involving statistical tables, and hypothesis testing. 3. Develop an ability to identify and formulate civil engineering problems and propose feasible solutions Students are frequently exposed to examples/scenarios with open-ended design questions, which require them to apply theories learnt to define, formulate and eventually analyze the uncertainty of civil engineering and acquire basic knowledge in several disciplines Students are exposed to non-deterministic problems from multiple disciplines of civil engineering, and hence made aware that uncertainty exists in all types of science and engineering scenarios. 1. Assignments are given to students to facilitate learning in the subject (for
Outcomes	 Assignments are given to students to facilitate rearining in the subject (for outcomes 1, 2, 3, 4) This course is split into two parts. A mid-term exam is held at the conclusion of each part to assess student understanding during the learning process (for outcomes 1, 2, 3) <u>Part 1 (50%):</u> Assignments: 18% (6% x 3) Mid-term examination: 32% <u>Part 2 (50%):</u> Assignments: 18% (6% x 3) Mid-term examination: 32% <u>Part 2 (50%):</u> Assignments: 18% (6% x 3) Mid-term examination: 32% (to be held at ARR-scheduled final exam time and venue; covers only Part 2)
Prepared by	Anthony Kwan LEUNG and Jize ZHANG
Date	9 Aug 2023