CENG 3230 Chemical and Biological Reaction Engineering

Lecturer:	Dr. King Lun Yeung (Ro Phone: 2358 7123 E-mail: kekyeung	oom 4550)
Teaching Asst:	Mr. Rans Lintag E-mail: rmlintag	Mr. Zhouying Jia E-mail: zyjia
en (2) D re	 ves: (1) Understand the basic principle of reaction and reactor engineering. (2) Develop skills in the design and analysis of different reactor units. (3) Ability to make informed decision on proper reactor. 	

- (3) Ability to make informed decision on proper reactor selection.
- (4) Develop problem-solving skills.

Textbook:

H. Scott Fogler, <u>Elements of Chemical Reaction Engieering</u>, Pearson, NJ (2006).

References:

L. D. Schmidt, <u>The Engineering of Chemical Reactions</u>, Oxford University Press, NY (2005).

Grade Assessment:

Class Attendance/Work	10%
Assignments	30 %
Midterm Examination	30 %
Final Examination	30 %

Class Attendance: 10%

(Objectives: To encourage student class participation and to develop an interactive learning environment)

- Exercises will be solved in the class with student participation to better illustrate the basic chemical and biological reaction engineering principles.

Assignments: 30%

(Objectives: To develop problem solving skills and provides a continuous assessment of students' progress in the course. Encourage the use of computation tools for solving chemical reaction and reactor problems.)

- Assignments (5) will be given on Thursday and due two weeks later (6:00 pm latest). There would be three problems each including one requiring the use computational calculation.

Examinations: 60% (Objectives: To assess the students understanding of the course materials)

Midterm and Final examination will be given during the semester. Each exam will be for 3 h and will be held on Saturday mornings.

Consultation Hours: Dr. King Lun Yeung (Rm. 4550)

Wednesday 16:00 - 18:00, Or by appointment

Lecture Outlines

(Three 1.5 h Lecture and one 1 h tutorial)

Week	Topics
1	Introduction, Reactions and Reactors
2	Conversion and Reactor Sizing
3-4	Rate Laws and Stoichiometry
5	Collection and Analysis of Data
6	Midterm Examination
6-7	Isothermal Reactor Design -1
8	Isothermal Reactor Design -2
9	Introduction to New Reactor Systems
10-11	Bioreactions and Bioreactors
12-13	Catalysis and Catalytic Reactors
14	Review
15	Final Examination