The Hong Kong University of Science and Technology

UG Course Syllabus

Introduction to Mobile Robotics

ELEC 3210

3 Credits

pre-/co-requisites: [(ELEC 2600 OR ELEC 2600H) AND MATH 2111] OR ELEC 3200

Name: Prof. SHEN Shaojie

Email: eeshaojie@ust.hk

Course Description

The course is to introduce the basic concepts of autonomous navigation used in mobile robotics. Course content includes navigation paradigm, common sensors, Bayes theory, Kalman filter, robot mapping, SLAM, motion planning, and software platforms for robotics research.

Intended Learning Outcomes (ILOs)

By the end of this course, students should be able to:

- 1. Understand and apply basic concepts of autonomous navigation in mobile robotics, including rigid body kinematics, probabilistic methods and path planning algorithms.
- 2. Implement and utilize common sensors and algorithms for robot localization and mapping.
- 3. Develop and integrate software for robotic platforms using Linux/C++ with ROS.
- 4. Analyze and solve problems using probabilistic methods such as Bayes and Kalman filters.
- 5. Design and execute path planning algorithms like Dijkstra and A*.

Lecture	Date	Contents	Assessment Tasks
L1	03/09	Robotics	Install Ubuntu & Play with ROS
L2	05/09	Pose and Rotation	
L3	10/09	Localization and Kinematics	
L4	12/09	Sensors	
L5	17/09	Iterative Closest Point	P1 - ICP odometry Out

Timetable

L6	19/09	Map and ROS	
L7	24/09	Bayes Filter	H1 - Bayes Out
L8	26/09	Particle Filter	
	01/10	National Day	
L9	03/10	Kalman Filter and EKF	H1 Due
L10	08/10	EKF SLAM	P1 Due, P2 - EKF SLAM Out
L11	10/10	Place Recognition	
L12	15/10	Pose Graph SLAM	
L13	17/10	Graph SLAM with Landmarks	
L14	22/10	Visual Feature Detection	
L15	24/10	Visual Descriptor and Matching	
L16	29/10	Planning and Graph Construction	P2 Due
L17	31/10	RRT, Dijkstra and A*	P3 - Path planning Out, H2 - Dijkstra vs. BFS Out
L18	05/11	 Trajectory Planning – Guest Lecturer Summary and Future Robotics 	
	07/11		H2 Due
	22/11		P3 Due

Assessments

Assessment Task	Contribution to Overall Course grade (%)	Due date
Homework 1 - Bayes	15%	03/10
Homework 2 - Dijkstra vs. BFS	15%	07/11
Project 1 - ICP Odometry	20%	08/10
Project 2 - EKF SLAM	30%	29/10
Project3 - Path Planning	20%	22/11

Mapping of Course ILOs to Assessment Tasks

Assessed Task	Mapped ILOs	Explanation	
Homework 1 - Bayes	ILO1, ILO4	This task assesses students' understanding and application of probabilistic methods (Bayes Rule) for autonomous navigation (ILO 1) and	

		their ability to analyze problems using
		these methods (ILO 4).
		This task assesses students' ability to
	ILO 1, ILO 5	understand navigation concepts such
Homework 2 - Dijkstra vs. BFS		as path planning (ILO 1), design the
		Dijkstra algorithm (ILO 5) and
		compare it with BFS.
		This project involves implementing
		concepts of rigid body kinematics (ILO
Project 1 - ICP Odometry	ILO 1, ILO 2, ILO 3	1) and using sensors for localization
		(ILO 2) and to develop software using
		Linux/C++ and ROS (ILO 3).
		This project tests students'
		understanding and application of
Broject 2 EKE SLAM		SLAM techniques (ILO 1) to
FIOJECT 2 - EKF SLAIVI	101, 10 2, 10 3, 10 4	implement localization algorithms
		(ILO 2), develop software (ILO 3), and
		apply Kalman filters (ILO 4).
		This task requires students to design
		and implement A* path planning
Project3 - Path Planning	ILO1, ILO3, ILO5	algorithm (ILO 1, ILO 5) and integrate
		software for robotic platforms using
		Linux/C++ with ROS (ILO 3).

Resubmission Policy

Late submissions are accepted up to 7 days after the due date, with 3% (of the total grade of the item) penalty per day.

Texts and Materials (Non-Compulsory)

- Siegwart, Roland, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to autonomous mobile robots. MIT press, 2011.
- Thrun, Sebastian. "Probabilistic robotics." Communications of the ACM 45.3 (2002): 52-57.

Academic Integrity

Students are expected to adhere to the university's academic integrity policy. Students are expected to uphold HKUST's Academic Honor Code and to maintain the highest standards of academic integrity. The University has zero tolerance of academic misconduct. Please refer to <u>Academic Integrity | HKUST –</u> <u>Academic Registry</u> for the University's definition of plagiarism and ways to avoid cheating and plagiarism.

Additional Resources

Canvas